Epigraph (mathematics)

Epigraph (mathematics)

In mathematics, the epigraph of a function "f" : RnR is the set of points lying on or above its graph:

: mbox{epi} f = { (x, mu) , : , x in mathbb{R}^n,, mu in mathbb{R},, mu ge f(x) } subseteq mathbb{R}^{n+1},

and the strict epigraph of the function is:

: mbox{epi}_S f = { (x, mu) , : , x in mathbb{R}^n,, mu in mathbb{R},, mu > f(x) } subseteq mathbb{R}^{n+1},

The set is empty if f equiv infty .

Similarly, the set of points on or below the function is its hypograph.

When referring to relations, such as preference relations in economics, a similarly defined set is generally called an upper contour set.

Properties

A function is convex if and only if its epigraph is a convex set. The epigraph of a real affine function "g" : RnR is a halfspace in Rn+1.

A function is lower semicontinuous if and only if its epigraph is closed.

References

* Rockafellar, Ralph Tyrell (1996), "Convex Analysis", Princeton University Press, Princeton, NJ. ISBN 0-691-01586-4.


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Epigraph — An epigraph is any one of the following:* an inscription, as studied in the archeological sub discipline of Epigraphy (archaeology) * Epigraph (literature) * Epigraph (mathematics) …   Wikipedia

  • List of mathematics articles (E) — NOTOC E E₇ E (mathematical constant) E function E₈ lattice E₈ manifold E∞ operad E7½ E8 investigation tool Earley parser Early stopping Earnshaw s theorem Earth mover s distance East Journal on Approximations Eastern Arabic numerals Easton s… …   Wikipedia

  • Hypograph (mathematics) — In mathematics, the hypograph of a function f : R n → R is the set of points lying on or below its graph:: mbox{hyp} f = { (x, mu) , : , x in mathbb{R}^n,, mu in mathbb{R},, mu le f(x) } subseteq mathbb{R}^{n+1}and the strict hypograph of the… …   Wikipedia

  • List of convexity topics — This is a list of convexity topics, by Wikipedia page. Alpha blending Barycentric coordinates Borsuk s conjecture Bond convexity Carathéodory s theorem (convex hull) Choquet theory Closed convex function Concavity Convex analysis Convex… …   Wikipedia

  • Konkave Funktion — Konvexe Funktion In der Analysis heißt eine Funktion f von einem Intervall I (oder allgemeiner einer konvexen Teilmenge C eines reellen Vektorraums) nach …   Deutsch Wikipedia

  • Konvexe Funktion — In der Analysis heißt eine Funktion f von einem Intervall I (oder allgemeiner einer konvexen Teilmenge C eines reellen Vektorraums) nach …   Deutsch Wikipedia

  • Gaziantep —   City   Gaziantep Castle …   Wikipedia

  • Convex conjugate — In mathematics, convex conjugation is a generalization of the Legendre transformation. It is also known as Legendre–Fenchel transformation or Fenchel transformation (after Adrien Marie Legendre and Werner Fenchel). Contents 1 Definition 2… …   Wikipedia

  • Claude Lemaréchal — is a French applied mathematician. In mathematical optimization, Claude Lemaréchal is known for his work in numerical methods for nonlinear optimization, especially for problems with nondifferentiable kinks. Lemaréchal and Phil. Wolfe pioneered… …   Wikipedia

  • Leonardo da Vinci — Da Vinci redirects here. For other uses, see Da Vinci (disambiguation). Leonardo da Vinci Self portrait …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”