- Head-on collision
-
A head-on collision is one where the front ends of two ships, trains, planes or vehicles hit each other, as opposed to a side collision or rear-end collision.
Contents
Rail transport
With rail, a head-on collision often implies a collision on a single line railway. This usually means that at least one of the trains has passed a signal at danger, or that a signalman has made a major error. Head-on collisions may also occur at junctions, for similar reasons.
With railways, the distance required for a train to stop is usually greater than the distance that can be sighted before the next blind curve, which is why signals and safeworking systems are so important.
In U.S. railroad jargon, this type of collision is called a cornfield meet.
Accidents
Note: if the collision occurs at a station or junction, or trains are travelling in the same direction, then the accident is not a pure head-on collision.
- August 11, 1837 — Suffolk, Virginia
- August 12, 1853 — Pawtucket, Rhode Island — 30 killed.
- September 10, 1874 — Norwich Thorpe, Norfolk, England — telegraph clerk's error; 25 killed
- August 7, 1876 — Radstock rail accident, Somerset, England — catalogue of errors through mismanagement; 15 killed
- 1892 — Lander, California
- February 9, 1904 — Sand Point, Ontario — 15 killed.
- September 24, 1904 — Morristown, Tennessee — 113 killed.
- September 15, 1907, Canaan, New Hampshire
- April 12, 1909 — Gary, Indiana train runs past a meet point.
- June 19, 1909 — Shadyside, Indiana train runs past a meet point.
- July 5, 1912 — Ligonier, Pennsylvania — 26 killed
- July 9, 1918 — Great train wreck of 1918, Nashville, Tennessee — 101 killed.
- January 26, 1921 — Abermule train collision, Montgomeryshire — failure to observe proper procedures; 17 killed.
- December 5, 1921 — Bryn Athyn, Pennsylvania — 27 killed.
- March 12, 1928 — Katukurunda, Sri Lankan— 28 killed.
- March 15, 1957 — near Kuurila, Finland — 28 killed.
- November 16, 1960 — Stéblová train disaster, Czechoslovakia: 118 killed.
- 1969 — Violet Town railway disaster, Australia — dead driver drives through crossing loop; no ATP; 9 killed.
- May 27, 1971 — Radevormwald, Germany — A freight train and a passenger train crashed into each other. 46 killed.
- July 25, 1980 — Winsum, The Netherlands: Two trains collide on a single track between Groningen and Roodeschool resulting in 9 deaths. Not clear if accident "head-on".
- January 27, 1982 — A freight train and an express passenger train collide head-on in heavy fog near Agra, India, killing 50.
- January 21, 1985 — Gary, Indiana — two South Shore Line trains collide head-on, 85 injured.
- February 8, 1986 — Hinton train collision, Alberta — freight train passed red light due to sleeping crew; 23 killed.
- 1989/1991 — Glasgow Bellgrove and Newton, Scotland — both SPAD’s with track layout at single lead junctions a major contributory factor
- 1994 — Cowden rail crash, England.
- January 14, 1996 — Hines Hill train collision, Australia — Signal Passed At Danger at a crossing loop causes a head-on collision
- May 1, 1997 — Hornbækbanen, Denmark: Two trains collide frontally after one passed a red signal leaving Firhøj station. Both drivers are killed.
- August 12, 1998 – 1998 Suonenjoki rail collision, Finland – A southbound InterCity train leaves Suonenjoki through a red signal and collides with a northbound freight train.
- August 2, 1999 — Gauhati rail disaster — Two express trains collide head-on in. Over 285 people are killed.
- October 20, 1999 — Waihapi, New Zealand — Two freight trains collide head-on after a misunderstanding of track warrant conditions by both drivers — one driver killed, one driver seriously injured.
- January 4, 2000 — Åsta accident, Åsta in Åmot, Norway — Two diesel passenger trains collide on the Rørosbanen killing 19. The fire after the collision lasts nearly six hours.
- September 9, 2002 — Bad Münder, Germany — Two freight trains collide head-on after a brake failure.
- March 20, 2003 — Roermond, The Netherlands — A NS passenger train collides head-on with a freight train;
- July 1, 2006 — Roslyn, Pennsylvania — 30 injured.
- August 27, 2006 — head-on collision between passenger and freight trains 30 km south of Victoria Falls — 5 killed.
- October 11, 2006 — 2006 Zoufftgen rail crash - head-on collision at Zoufftgen, on the border between France and Luxembourg
- September 12, 2008 - 2008 Chatsworth train collision- head-on collision in Los Angeles - 25 killed, 135 injured
- June 22, 2009 - June 22, 2009 Washington Metro train collision - head-on collision between two trains. - 9 killed, 80 injured
- February 15, 2010 - Halle train collision - head-on collision between two trains near Brussels, Belgium - 18 killed, 125 injured (estimates)
- December 23, 2010 - head-on train collision in Aegviidu, Estonia between a passenger train and a freight train. Passenger train driver killed, two in freight train injured.
Sea transport
With shipping, there are two main factors influencing the chance of a head-on collision. Firstly, even with radar and radio, it is difficult to tell what course the opposing ships are following. Secondly, big ships have so much momentum, that it is very hard to change course at the last moment.
Road transport
Head-on collisions are an often fatal type of road traffic accident. U.S. statistics show that in 2005, head-on crashes were only 2.0% of all crashes, yet accounted for 10.1% of US fatal crashes. A common misconception is that this over-representation is because the relative velocity of vehicles traveling in opposite directions is high. It was previously thought that a head-on crash between two vehicles traveling at 50 mph is roughly equivalent to a vehicle hitting a 'wall' (a stationary near-immovable object) at 100 mph. However, experimentation in 2010 showed that due to Newton's Third Law, the actual result of such a collision is equivalent to hitting a stationary near-immovable object at 50 mph[2]
Head-on collisions, sideswipes, and run-off-road crashes all belong to a category of crashes called lane-departure or road-departure crashes. This is because they have similar causes, if different consequences. The driver of a vehicle fails to stay centered in their lane, and either leaves the roadway, or crosses the centerline, possibly resulting in a head-on or sideswipe collision, or, if the vehicle avoids oncoming traffic, a run-off-road crash on the far side of the road.
Preventive measures include traffic signs and road surface markings to help guide drivers through curves, as well as separating opposing lanes of traffic with wide central reservation (or median) and median barriers to prevent crossover incidents. Median barriers are physical barriers between the lanes of traffic, such as concrete barriers or wire rope safety barrier. These are actually roadside hazards in their own right, but on high speed roads, the severity of a collision with a median barrier is usually lower than the severity of a head-on crash.
The European Road Assessment Programme's Road Protection Score (RPS) is based on a schedule of detailed road design elements that correspond to each of the four main crash types, including head-on collisions. The Head-on Crash element of the RPS measures how well traffic lanes are separated. Motorways generally have crash protection features in harmony with the high speeds allowed. The Star Rating results show that motorways generally score well with a typical 4-star rating even though their permitted speeds are the highest on the network. But results from Star Rating research in Britain, Germany, the Netherlands and Sweden have shown that there is a pressing need to find better median, run-off and junction protection at reasonable cost on single carriageway roads.
Another form of head-on crash is the wrong-way entry crash, where a driver on a surface road turns onto an off-ramp from a motorway or freeway, instead of the on-ramp. They can also happen on divided arterials if a driver turns into the wrong side of the road. Considerable importance is placed on designing ramp terminals and intersections to prevent these incidents. This often takes to form of special signage at freeway off-ramps to discourage drivers from going the wrong way. The Manual on Uniform Traffic Control Devices provides instruction on this signage installation in its Section 2E.50.
Sideswipe collisions
Sideswipe collisions are where the sides of two vehicles traveling in opposite directions touch. They differ from head-on collisions only in that the errant vehicle impacts the side of the other vehicle rather than the front. Severity is usually lower than a head-on collision, since it tends to be a glancing blow rather than a direct impact. However, loss of control of either vehicle can have unpredictable effects and secondary crashes can dramatically increase the expected crash severity.
Sideswipe collisions are frequently caused by a failure to control a vehicle.
See also
- Collision
- Lists of rail accidents
- Train wreck
References
- ^ MUTCD Section 2A.18. Mounting Height. http://www.mutcd.fhwa.dot.gov/htm/2003r1r2/part2/part2a.htm#section2A18
- ^ "MythBusters: Mythssion Control - Head-on Collision Experiment". http://dsc.discovery.com/videos/mythbusters-mythssion-control/. Retrieved 6 May 2010.
Categories:- Road accidents by type
Wikimedia Foundation. 2010.