Net energy gain

Net energy gain

Net Energy Gain (NEG) is a concept used in energy economics that refers to the difference between the energy expended to harvest an energy source and the amount of energy gained from that harvest.[1] The net energy gain, which can be expressed in joules, differs from the net financial gain that may result from the energy harvesting process, in that various sources of energy (e.g. natural gas, coal, etc.) can be priced differently for the same amount of energy.


Calculating NEG

A net energy gain is achieved by expending less energy acquiring a source of energy than is contained in the source to be consumed. That is,

NEG = EnergyConsumableEnergyExpended.

Factors to consider when calculating NEG is the type of energy, the way energy is used and acquired, and the methods used to store or transport the energy. It is also possible to overcomplicate the equation by an infinite number of externalities and inefficiencies that may be present during the energy harvesting process.

Sources of energy

The definition of an energy source is not rigorous. Anything that can provide energy to anything else can qualify. Wood in a stove is full of potential thermal energy; in a car, mechanical energy is acquired from the combustion of gasoline, and the combustion of coal is converted from thermal to mechanical, and then to electrical energy. Examples of energy sources include:

  • Fossil fuels
  • Nuclear fuels (e.g., uranium and plutonium)
  • Radiation from the sun
  • Mechanical energy from wind, rivers, tides, etc.
  • Bio-fuels derived from biomass, in turn having consumed soil nutrients during growth.
  • Heat from within the earth (geothermal radiation)

The term net energy gain can be used in slightly different ways:


The usual definition of net energy gain compares the energy required to extract energy (that is, to find it, remove it from the ground, refine it, and ship it to the energy user) with the amount of energy produced and transmitted to a user from some (typically underground) energy resource. To better understand this, assume an economy has a certain amount of finite oil reserves that are still underground, unextracted. To get to that energy, some of the extracted oil needs to be consumed in the extraction process to run the engines driving the pumps, therefore after extraction the net energy produced will be less than the amount of energy in the ground before extraction, because some had to be used up.

The extraction energy can be viewed in one of two ways: profitable extractable (NEG>0) or nonprofitable extractable (NEG<0). For instance, in the Athabasca Oil Sands, the highly diffuse nature of the tar sands and low price of crude oil rendered them uneconomical to mine until the late 1950s (NEG<0). Since then, the price of oil has risen and a new steam extraction technique has been developed, allowing the sands to become the largest oil provider in Alberta (NEG>0).


The situation is different with sustainable energy sources, such as hydroelectric, wind, solar, and geothermal energy sources, because there is no bulk reserve to account for (other than the Sun's lifetime), but the energy continuously trickles, so only the energy required for extraction is considered.

In all energy extraction cases, the life cycle of the energy-extraction device is crucial for the NEG-ratio. If an extraction device is defunct after 10 years, its NEG will be significantly lower than if it operates for 30 years. Therefore, the energy payback time (sometimes referred to as energy amortization) can be used instead, which is the time, usually given in years, a plant must operate until the running NEG becomes positive (i.e. until the amount of energy needed for the plant infrastructure has been harvested from the plant).

For photovoltaic cells, the NEG of their production depends on the operating lifetime, and the amount of sunlight available in the operating location. Today the break-even energy payback time (the amount of time required to produce an amount of energy equal to that originally used to manufacture the array) is around two to four years,[2][3] compared to an effective production life of over 20 to 30 years (e.g. many manufacturers now provide a 25-year warranty on their products).


Net energy gain of biofuels has been a particular source of controversy for ethanol derived from corn (bioethanol). The actual net energy of biofuel production is highly dependent on both the bio source that is converted into energy, how it is grown and harvested (and in particular the use of petroleum-derived fertilizer), and how efficient the process of conversion to usable energy is. Details on this can be found in the Ethanol fuel energy balance article. Similar considerations also apply to biodiesel and other fuels.

ISO 13602

ISO 13602-1 provides methods to analyse, characterize and compare technical energy systems (TES) with all their inputs, outputs and risk factors. It contains rules and guidelines for the methodology for such analyses.[4]

ISO 13602-1 describes a means of to establish relations between inputs and outputs (net energy) and thus to facilitate certification, marking, and labelling, comparable characterizations, coefficient of performance, energy resource planning, environmental impact assessments, meaningful energy statistics and forecasting of the direct natural energy resource or energyware inputs, technical energy system investments and the performed and expected future energy service outputs.[4]

In ISO 13602-1:2002, renewable resource is defined as "natural resource for which the ratio of the creation of the natural resource to the output of that resource from nature to the technosphere is equal to or greater than one".


During the 1920s, 50 barrels (7.9 m3) of crude oil were extracted for every barrel of crude used in the extraction and refining process. Today only 5 barrels (0.79 m3) are harvested for every barrel used. When the net energy gain of an energy source reaches zero, then the source is no longer contributing energy to an economy.

See also


External links

Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Energy balance — has the following meanings in several fields:* In physics, energy balance is a systematic presentation of energy flows and transformations in a system. Theoretical basis for an energy balance is the first law of thermodynamics according to which… …   Wikipedia

  • Energy returned on energy invested — Contents 1 Non manmade energy inputs 2 Relationship to net energy gain 3 The economic influence of EROEI …   Wikipedia

  • Energy policy — is the manner in which a given entity (often governmental) has decided to address issues of energy development including energy production, distribution and consumption. The attributes of energy policy may include legislation, international… …   Wikipedia

  • Energy — This article is about the scalar physical quantity. For other uses, see Energy (disambiguation). Energetic redirects here. For other uses, see Energetic (disambiguation) …   Wikipedia

  • Energy crisis — An energy crisis is any great bottleneck (or price rise) in the supply of energy resources to an economy. It usually refers to the shortage of oil and additionally to electricity or other natural resources. An energy crisis may be referred to as… …   Wikipedia

  • Energy policy of Russia — The Energy policy of Russia is contained in an Energy Strategy document, which sets out policy for the period up to 2020. In 2000, the Russian government approved the main provisions of the Russian energy strategy to 2020, and in 2003 the new… …   Wikipedia

  • Ethanol fuel energy balance — † depending on production method All biomass needs to go through some of these steps: it needs to be grown, collected, dried, fermented, and burned. All of these steps require resources and an infrastructure. The total amount of energy input into …   Wikipedia

  • Outline of energy — See also: Index of energy articles In physics, energy (from the Greek ἐνέργεια – energeia, activity, operation , from ἐνεργός – energos, active, working [1]) is a scalar physical quantity that describes the amount of work that can be performed by …   Wikipedia

  • Renewable energy commercialization — The wind, Sun, and biomass are three renewable energy sources …   Wikipedia

  • Community wind energy — Wind turbines at Findhorn Ecovillage make the community a net exporter of electricity. Community wind projects are locally owned by farmers, investors, businesses, schools, utilities, or other public or private entities who utilize wind energy to …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”