- Intrusion detection system
-
An intrusion detection system (IDS) is a device or software application that monitors network and/or system activities for malicious activities or policy violations and produces reports to a Management Station.[1] Some systems may attempt to stop an intrusion attempt but this is neither required nor expected of a monitoring system.[1] Intrusion detection and prevention systems (IDPS) are primarily focused on identifying possible incidents, logging information about them, and reporting attempts.[1] In addition, organizations use IDPSes for other purposes, such as identifying problems with security policies, documenting existing threats, and deterring individuals from violating security policies.[1] IDPSes have become a necessary addition to the security infrastructure of nearly every organization.[1]
IDPSes typically record information related to observed events, notify security administrators of important observed events, and produce reports.[1] Many IDPSes can also respond to a detected threat by attempting to prevent it from succeeding.[1] They use several response techniques, which involve the IDPS stopping the attack itself, changing the security environment (e.g., reconfiguring a firewall), or changing the attack’s content.[1]
Contents
Terminology
- Alert/Alarm: A signal suggesting that a system has been or is being attacked.[2]
- True Positive: A legitimate attack which triggers an IDS to produce an alarm.[2]
- False Positive: An event signaling an IDS to produce an alarm when no attack has taken place.[2]
- False Negative: A failure of an IDS to detect an actual attack.[2]
- True Negative: When no attack has taken place and no alarm is raised.
- Noise: Data or interference that can trigger a false positive.[2]
- Site policy: Guidelines within an organization that control the rules and configurations of an IDS.[2]
- Site policy awareness: An IDS's ability to dynamically change its rules and configurations in response to changing environmental activity.[2]
- Confidence value: A value an organization places on an IDS based on past performance and analysis to help determine its ability to effectively identify an attack.[2]
- Alarm filtering: The process of categorizing attack alerts produced from an IDS in order to distinguish false positives from actual attacks.[2]
- Attacker or Intruder: An entity who tries to find a way to gain unauthorized access to information, inflict harm or engage in other malicious activities.
- Masquerader: A user who does not have the authority to a system, but tries to access the information as an authorized user. They are generally outside users.
- Misfeasor: They are commonly internal users and can be of two types:
- An authorized user with limited permissions.
- A user with full permissions and who misuses their powers.
- Clandestine user: A user who acts as a supervisor and tries to use his privileges so as to avoid being captured.
Types
For the purpose of dealing with IT, there are two main types of IDS:
- Network intrusion detection system (NIDS)
- is an independent platform that identifies intrusions by examining network traffic and monitors multiple hosts. Network intrusion detection systems gain access to network traffic by connecting to a network hub, network switch configured for port mirroring, or network tap. In a NIDS, sensors are located at choke points in the network to be monitored, often in the demilitarized zone (DMZ) or at network borders. Sensors capture all network traffic and analyzes the content of individual packets for malicious traffic. An example of a NIDS is Snort.
- Host-based intrusion detection system (HIDS)
- It consists of an agent on a host that identifies intrusions by analyzing system calls, application logs, file-system modifications (binaries, password files, capability databases, Access control lists, etc.) and other host activities and state. In a HIDS, sensors usually consist of a software agent. Some application-based IDS are also part of this category. An example of a HIDS is OSSEC.
Intrusion detection systems can also be system-specific using custom tools and honeypots.
Passive and/or reactive systems
In a passive system, the intrusion detection system (IDS) sensor detects a potential security breach, logs the information and signals an alert on the console and or owner. In a reactive system, also known as an intrusion prevention system (IPS), the IPS auto-responds to the suspicious activity by resetting the connection or by reprogramming the firewall to block network traffic from the suspected malicious source. The term IDPS is commonly used where this can happen automatically or at the command of an operator; systems that both "detect" (alert) and/or "prevent."
Comparison with firewalls
Though they both relate to network security, an intrusion detection system (IDS) differs from a firewall in that a firewall looks outwardly for intrusions in order to stop them from happening. Firewalls limit access between networks to prevent intrusion and do not signal an attack from inside the network. An IDS evaluates a suspected intrusion once it has taken place and signals an alarm. An IDS also watches for attacks that originate from within a system. This is traditionally achieved by examining network communications, identifying heuristics and patterns (often known as signatures) of common computer attacks, and taking action to alert operators. A system that terminates connections is called an intrusion prevention system, and is another form of an application layer firewall.
Statistical anomaly and signature based IDSes
All Intrusion Detection Systems use one of two detection techniques:
Statistical anomaly-based IDS
A statistical anomaly-based IDS determines normal network activity like what sort of bandwidth is generally used, what protocols are used, what ports and devices generally connect to each other- and alert the administrator or user when traffic is detected which is anomalous(not normal).[2]
Signature-based IDS
Signature based IDS monitors packets in the Network and compares with pre-configured and pre-determined attack patterns known as signatures. The issue is that there will be lag between the new threat discovered and Signature being applied in IDS for detecting the threat.During this lag time your IDS will be unable to identify the threat.[2]
Limitations
- Noise can severely limit an Intrusion detection system's effectiveness. Bad packets generated from software bugs, corrupt DNS data, and local packets that escaped can create a significantly high false-alarm rate.[3]
- It is not uncommon for the number of real attacks to be far below the false-alarm rate. Real attacks are often so far below the false-alarm rate that they are often missed and ignored.[3]
- Many attacks are geared for specific versions of software that are usually outdated. A constantly changing library of signatures is needed to mitigate threats. Outdated signature databases can leave the IDS vulnerable to new strategies.[3]
Evasion techniques
Intrusion detection system evasion techniques bypass detection by creating different states on the IDS and on the targeted computer. The adversary accomplishes this by manipulating either the attack itself or the network traffic that contains the attack.
Development
A preliminary concept of an IDS began and reviews of audit trails.[4] An example of an audit trail would be a log of user access.
Fred Cohen noted in 1984 (see Intrusion Detection) that it is impossible to detect an intrusion in every case and that the resources needed to detect intrusions grows with the amount of usage.
Dorothy E. Denning, assisted by Peter G. Neumann, published a model of an IDS in 1986 that formed the basis for many systems today.[5] Her model used statistics for anomaly detection, and resulted in an early IDS at SRI International named the Intrusion Detection Expert System (IDES), which ran on Sun workstations and could consider both user and network level data.[6] IDES had a dual approach with a rule-based Expert System to detect known types of intrusions plus a statistical anomaly detection component based on profiles of users, host systems, and target systems. Lunt proposed adding an Artificial neural network as a third component. She said all three components could then report to a resolver. SRI followed IDES in 1993 with the Next-generation Intrusion Detection Expert System (NIDES).[7]
The Multics intrusion detection and alerting system (MIDAS), an expert system using P-BEST and Lisp, was developed in 1988 based on the work of Denning and Neumann.[8] Haystack was also developed this year using statistics to reduce audit trails.[9]
Wisdom & Sense (W&S) was a statistics-based anomaly detector developed in 1989 at the Los Alamos National Laboratory.[10] W&S created rules based on statistical analysis, and then used those rules for anomaly detection.
In 1990, the Time-based Inductive Machine (TIM) did anomaly detection using inductive learning of sequential user patterns in Common Lisp on a VAX 3500 computer.[11] The Network Security Monitor (NSM) performed masking on access matrices for anomaly detection on a Sun-3/50 workstation.[12] The Information Security Officer's Assistant (ISOA) was a 1990 prototype that considered a variety of strategies including statistics, a profile checker, and an expert system.[13] ComputerWatch at AT&T Bell Labs used statistics and rules for audit data reduction and intrusion detection.[14]
Then, in 1991, researchers at the University of California, Davis created a prototype Distributed Intrusion Detection System (DIDS), which was also an expert system.[15] The Network Anomaly Detection and Intrusion Reporter (NADIR), also in 1991, was a prototype IDS developed at the Los Alamos National Laboratory's Integrated Computing Network (ICN), and was heavily influenced by the work of Denning and Lunt.[16] NADIR used a statistics-based anomaly detector and an expert system.
The Lawrence Berkeley National Laboratory announced Bro in 1998, which used its own rule language for packet analysis from libpcap data.[17] Network Flight Recorder (NFR) in 1999 also used libpcap.[18] APE was developed as a packet sniffer, also using libpcap, in November, 1998, and was renamed Snort one month later, and has since become the world's largest used IDS/IPS system with over 300,000 active users.[19]
The Audit Data Analysis and Mining (ADAM) IDS in 2001 used tcpdump to build profiles of rules for classifications.[20]
In 2003, Dr. Yongguang Zhang and Dr. Wenke Lee argue for the importance of IDS in networks with mobile nodes.[21]
See also
- Anomaly-based intrusion detection system
- Application protocol-based intrusion detection system (APIDS)
- Artificial immune system
- Autonomous Agents for Intrusion Detection
- Host-based intrusion detection system (HIDS)
- Intrusion prevention system (IPS)
- Network intrusion detection system (NIDS)
- Protocol-based intrusion detection system (PIDS)
- Security Management
Free Intrusion Detection Systems
- AIDE
- Bro NIDS
- OSSEC HIDS
- Prelude Hybrid IDS
- Samhain
- Snort
- Suricata
References
This article incorporates public domain material from the National Institute of Standards and Technology document "Guide to Intrusion Detection and Prevention Systems, SP800-94" by Karen Scarfone, Peter Mell (retrieved on 1 January 2010).
- ^ a b c d e f g h Scarfone, Karen; Mell, Peter (February 2007). "Guide to Intrusion Detection and Prevention Systems (IDPS)". Computer Security Resource Center (National Institute of Standards and Technology) (800-94). http://csrc.ncsl.nist.gov/publications/nistpubs/800-94/SP800-94.pdf. Retrieved 1 January 2010.
- ^ a b c d e f g h i j k nitin.; Mattord, verma (2008). Principles of Information Security. Course Technology. pp. 290–301. ISBN 9781423901778.
- ^ a b c Anderson, Ross (2001). Security Engineering: A Guide to Building Dependable Distributed Systems. New York: John Wiley & Sons. pp. 387–388. ISBN 9780471389224.
- ^ Anderson, James P., "Computer Security Threat Monitoring and Surveillance," Washing, PA, James P. Anderson Co., 1980.
- ^ Denning, Dorothy E., "An Intrusion Detection Model," Proceedings of the Seventh IEEE Symposium on Security and Privacy, May 1986, pages 119–131
- ^ Lunt, Teresa F., "IDES: An Intelligent System for Detecting Intruders," Proceedings of the Symposium on Computer Security; Threats, and Countermeasures; Rome, Italy, November 22–23, 1990, pages 110–121.
- ^ Lunt, Teresa F., "Detecting Intruders in Computer Systems," 1993 Conference on Auditing and Computer Technology, SRI International
- ^ Sebring, Michael M., and Whitehurst, R. Alan., "Expert Systems in Intrusion Detection: A Case Study," The 11th National Computer Security Conference, October, 1988
- ^ Smaha, Stephen E., "Haystack: An Intrusion Detection System," The Fourth Aerospace Computer Security Applications Conference, Orlando, FL, December, 1988
- ^ Vaccaro, H.S., and Liepins, G.E., "Detection of Anomalous Computer Session Activity," The 1989 IEEE Symposium on Security and Privacy, May, 1989
- ^ Teng, Henry S., Chen, Kaihu, and Lu, Stephen C-Y, "Adaptive Real-time Anomaly Detection Using Inductively Generated Sequential Patterns," 1990 IEEE Symposium on Security and Privacy
- ^ Heberlein, L. Todd, Dias, Gihan V., Levitt, Karl N., Mukherjee, Biswanath, Wood, Jeff, and Wolber, David, "A Network Security Monitor," 1990 Symposium on Research in Security and Privacy, Oakland, CA, pages 296–304
- ^ Winkeler, J.R., "A UNIX Prototype for Intrusion and Anomaly Detection in Secure Networks," The Thirteenth National Computer Security Conference, Washington, DC., pages 115–124, 1990
- ^ Dowell, Cheri, and Ramstedt, Paul, "The ComputerWatch Data Reduction Tool," Proceedings of the 13th National Computer Security Conference, Washington, D.C., 1990
- ^ Snapp, Steven R, Brentano, James, Dias, Gihan V., Goan, Terrance L., Heberlein, L. Todd, Ho, Che-Lin, Levitt, Karl N., Mukherjee, Biswanath, Smaha, Stephen E., Grance, Tim, Teal, Daniel M. and Mansur, Doug, "DIDS (Distributed Intrusion Detection System) -- Motivation, Architecture, and An Early Prototype," The 14th National Computer Security Conference, October, 1991, pages 167–176.
- ^ Jackson, Kathleen, DuBois, David H., and Stallings, Cathy A., "A Phased Approach to Network Intrusion Detection," 14th National Computing Security Conference, 1991
- ^ Paxson, Vern, "Bro: A System for Detecting Network Intruders in Real-Time," Proceedings of The 7th USENIX Security Symposium, San Antonio, TX, 1998
- ^ Amoroso, Edward, "Intrusion Detection: An Introduction to Internet Surveillance, Correlation, Trace Back, Traps, and Response," Intrusion.Net Books, Sparta, New Jersey, 1999, ISBN 0-9666700-7-8
- ^ Kohlenberg, Toby (Ed.), Alder, Raven, Carter, Dr. Everett F. (Skip), Jr., Esler, Joel., Foster, James C., Jonkman Marty, Raffael, and Poor, Mike, "Snort IDS and IPS Toolkit," Syngress, 2007, ISBN 978-1-59749-099-3
- ^ Barbara, Daniel, Couto, Julia, Jajodia, Sushil, Popyack, Leonard, and Wu, Ningning, "ADAM: Detecting Intrusions by Data Mining," Proceedings of the IEEE Workshop on Information Assurance and Security, West Point, NY, June 5–6, 2001
- ^ Intrusion Detection Techniques for Mobile Wireless Networks, ACM WINET 2003 <http://www.cc.gatech.edu/~wenke/papers/winet03.pdf>
Further reading
- Scarfone, Karen; Mell, Peter (February 2007). "Guide to Intrusion Detection and Prevention Systems (IDPS)". Computer Security Resource Center (National Institute of Standards and Technology) (800-94). http://csrc.ncsl.nist.gov/publications/nistpubs/800-94/SP800-94.pdf. Retrieved 1 January 2010.
- "Intrusion Detection/Prevention Systems classification tree". IPsec.pl. http://ipsec.pl/intrusion-detection/prevention-systems-classification-tree.html. Retrieved 30 July 2010.
- Singh, Abhishek; Lambert, Scott; Williams, Jeff. "Evasions In Intrusion Prevention Detection Systems". Virus Bulletin. http://www.virusbtn.com/virusbulletin/archive/2010/04/vb201004-evasions-in-IPS-IDS. Retrieved April 2010.
- Bezroukov, Nikolai (11 December 2008). "Architectural Issues of Intrusion Detection Infrastructure in Large Enterprises (Revision 0.82)". Softpanorama. http://www.softpanorama.org/Articles/architectural_issues_of_intrusion_detection_infrastructure.shtml. Retrieved 30 July 2010.
External links
Malware Infectious malware Concealment Malware for profit Privacy-invasive software · Adware · Spyware · Botnet · Keystroke logging · Web threats · Fraudulent dialer · Malbot · Scareware · Rogue security software · RansomwareBy operating system Protection Antivirus software · Defensive computing · Firewall · Intrusion detection system · Data loss prevention softwareCountermeasures Categories:- Intrusion detection systems
Wikimedia Foundation. 2010.