- Metagenomics
-
Metagenomics is the study of metagenomes, genetic material recovered directly from environmental samples. The broad field may also be referred to as environmental genomics, ecogenomics or community genomics. Traditional microbiology and microbial genome sequencing rely upon cultivated clonal cultures. Metagenomics offers a powerful lens for viewing the microbial world that has the potential to revolutionize understanding of the entire living world.[1][2]
Early environmental gene sequencing cloned specific genes (often the 16S rRNA gene) to produce a profile of diversity in a natural sample. Such work revealed that the vast majority of microbial biodiversity had been missed by cultivation-based methods.[3] Recent studies use "shotgun" Sanger sequencing or massively parallel pyrosequencing to get largely unbiased samples of all genes from all the members of the sampled communities.[4]
Contents
History
Origin of the term
The term "metagenomics" was first used by Jo Handelsman, Jon Clardy, Robert M. Goodman, and others, and first appeared in publication in 1998.[5] The term metagenome referenced the idea that a collection of genes sequenced from the environment could be analyzed in a way analogous to the study of a single genome. The exploding interest in environmental genetics, along with the buzzword-like nature of the term, has resulted in the broader use of metagenomics to describe any sequencing of genetic material from environmental (i.e. uncultured) samples, even work that focuses on one organism or gene. Recently, Kevin Chen and Lior Pachter (researchers at the University of California, Berkeley) defined metagenomics as "the application of modern genomics techniques to the study of communities of microbial organisms directly in their natural environments, bypassing the need for isolation and lab cultivation of individual species."[6]
Environmental gene surveys
Conventional sequencing begins with a culture of identical cells as a source of DNA. However, early metagenomic studies revealed that there are probably large groups of microorganisms in many environments that cannot be cultured and thus cannot be sequenced. These early studies focused on 16S ribosomal RNA sequences which are relatively short, often conserved within a species, and generally different between species. Many 16S rRNA sequences have been found which do not belong to any known cultured species, indicating that there are numerous non-isolated organisms out there.
Early molecular work in the field was conducted by Norman R. Pace and colleagues, who used PCR to explore the diversity of ribosomal RNA sequences.[7] The insights gained from these breakthrough studies led Pace to propose the idea of cloning DNA directly from environmental samples as early as 1985.[8] This led to the first report of isolating and cloning bulk DNA from an environmental sample, published by Pace and colleagues in 1991[9] while Pace was in the Department of Biology at Indiana University. Considerable efforts ensured that these were not PCR false positives and supported the existence of a complex community of unexplored species. Although this methodology was limited to exploring highly conserved, non-protein coding genes, it did support early microbial morphology-based observations that diversity was far more complex than was known by culturing methods.
Soon after that, Healy reported the metagenomic isolation of functional genes from "zoolibraries" constructed from a complex culture of environmental organisms grown in the laboratory on dried grasses in 1995.[10] After leaving the Pace laboratory, Ed DeLong continued in the field and has published work that has largely laid the groundwork for environmental phylogenies based on signature 16S sequences, beginning with his group's construction of libraries from marine samples.[11]
Longer sequences from environmental samples
Recovery of DNA sequences longer than a few thousand base pairs from environmental samples was very difficult until recent advances in molecular biological techniques, particularly related to constructing libraries in bacterial artificial chromosomes (BACs), provided better vectors for molecular cloning.[12]
Shotgun metagenomics
Advances in bioinformatics, refinements of DNA amplification, and proliferation of computational power have greatly aided the analysis of DNA sequences recovered from environmental samples. These advances have enabled the adaptation of shotgun sequencing to metagenomic samples. The approach, used to sequence many cultured microorganisms as well as the human genome, randomly shears DNA, sequences many short sequences, and reconstructs them into a consensus sequence.
In 2002, Mya Breitbart, Forest Rohwer, and colleagues used environmental shotgun sequencing to show that 200 liters of seawater contains over 5000 different viruses.[13] Subsequent studies showed that there are >1000 viral species in human stool and possibly a million different viruses per kilogram of marine sediment, including many bacteriophages. Essentially all of the viruses in these studies were new species. In 2004, Gene Tyson, Jill Banfield, and colleagues at the University of California, Berkeley and the Joint Genome Institute sequenced DNA extracted from an acid mine drainage system.[14] This effort resulted in the complete, or nearly complete, genomes for a handful of bacteria and archaea that had previously resisted attempts to culture them. It was now possible to study entire genomes without the biases associated with laboratory cultures.[15]
Global Ocean Sampling Expedition
Main article: Global Ocean Sampling ExpeditionBeginning in 2003, Craig Venter, leader of the privately-funded parallel of the Human Genome Project, has led the Global Ocean Sampling Expedition, circumnavigating the globe and collecting metagenomic samples throughout. All of these samples are sequenced using shotgun sequencing, in hopes that new genomes (and therefore new organisms) would be identified. The pilot project, conducted in the Sargasso Sea, found DNA from nearly 2000 different species, including 148 types of bacteria never before seen.[16] As of 2009, Venter has circumnavigated the globe and thoroughly explored the West Coast of the United States, and is currently in the midst of a two-year expedition to explore the Baltic, Mediterranean and Black Seas.
Pyrosequencing
In 2006 Robert Edwards, Forest Rohwer, and colleagues at San Diego State University published the first sequences of environmental samples generated with so-called next generation sequencing, in this case chip-based pyrosequencing developed by 454 Life Sciences.[17] This technique for sequencing DNA generates shorter fragments than conventional techniques, however this limitation is compensated for by the very large number of sequences generated. In addition, this technique does not require cloning the DNA before sequencing, removing one of the main biases in metagenomics.
Software
A major problem with metagenomes is binning. Binning is the process of identifying from what organism a particular sequence has originated. Traditionally, BLAST is a method used to rapidly search for similar sequences in existing public databases. More advanced methods have been employed to bin sequences. Big successes have been achieved for a family of methods using intrinsic features of the sequence, such as oligonucleotide frequencies. These methods include TETRA (Teeling et al., 2004),[18] Phylopythia (McHardy et al., 2007), TACOA (Diaz et al., 2009), PCAHIER (Zheng and Wu, 2010),[19] DiScRIBinATE (Ghosh et al., 2010),[20] SPHINX (Mohammed et al., 2011),[21] and Parallel-META (Su et al., 2011).[22] In 2007, Daniel Huson and Stephan Schuster developed and published the first stand-alone metagenome analysis tool, MEGAN, which can be used to perform a first analysis of a metagenomic shotgun dataset. This tool was originally developed to analyse the metagenome of a mammoth sample.[23] However in a recent study by Monzoorul et al. 2009,[24] it was shown that adopting the LCA approach (of MEGAN) solely based on bit-score of the alignment leads to a number of false positive assignments especially in the context of metagenomic sequences originating from new organisms. This study proposed a new approach called SOrt-ITEMS which used several alignment parameters to increase the accuracy of assignments.
MG-RAST
In 2007, Folker Meyer and Robert Edwards and a team at Argonne National Laboratory and the University of Chicago released the Metagenomics RAST server (MG-RAST) a community resource for metagenome data set analysis.[25] As of October 2011 3.7 Terabases (10^12 bases) of DNA have been analyzed by MG-RAST, more than 4300 public data sets are freely available for comparison within MG-RAST. Over 7000 users now have submitted a total of 38,000 metagenomes to MG-RAST. The server also acts as the de-fact repository for metagenomics data.
Applications
Metagenomics can improve strategies for monitoring the impact of pollutants on ecosystems and for cleaning up contaminated environments. Increased understanding of how microbial communities cope with pollutants is helping assess the potential of contaminated sites to recover from pollution and increase the chances of bioaugmentation or biostimulation trials to succeed.[26]
Recent progress in mining the rich genetic resource of non-culturable microbes has led to the discovery of new genes, enzymes, and natural products. The impact of metagenomics is witnessed in the development of commodity and fine chemicals, agrochemicals and pharmaceuticals where the benefit of enzyme-catalyzed chiral synthesis is increasingly recognized.[27]
Metagenomic sequencing is being used to characterize the microbial communities from 15-18 body sites from at least 250 individuals. This is part of the Human Microbiome initiative with primary goals to determine if there is a core human microbiome, to understand the changes in the human microbiome that can be correlated with human health, and to develop new technological and bioinformatics tools to support these goals.[28]
It is well known that the vast majority of microbes have not been cultivated. Functional metagenomics strategies are being used to explore the interactions between plants and microbes through cultivation-independent study of the microbial communities.[29]
Finally, metagenomic sequencing is particularly useful in the study of viral communities. As viruses lack a shared universal phylogenetic marker (as are 16S RNA for bacteria and archaea, and 18S RNA for eukarya), the only way to access the genetic diversity of the viral community from an environmental sample is through metagenomics. Viral metagenomes (also called viromes) should thus provide more and more information about viral diversity and evolution.[30]
Microbial diversity
Much of the interest in metagenomics comes from the discovery that the vast majority of microorganisms had previously gone unnoticed. Traditional microbiological methods relied upon laboratory cultures of organisms. Surveys of ribosomal RNA (rRNA) genes taken directly from the environment revealed that cultivation based methods find less than 1% of the bacteria and archaea species in a sample.[3]
Gene surveys
Shotgun sequencing and screens of clone libraries reveal genes present in environmental samples. This provides information both on which organisms are present and what metabolic processes are possible in the community. This can be helpful in understanding the ecology of a community, particularly if multiple samples are compared to each other.[31]
Environmental genomes
Shotgun metagenomics also is capable of sequencing nearly complete microbial genomes directly from the environment.[14] Because the collection of DNA from an environment is largely uncontrolled, the most abundant organisms in an environmental sample are most highly represented in the resulting sequence data. To achieve the high coverage needed to fully resolve the genomes of underrepresented community members, large samples, often prohibitively so, are needed. On the other hand, the random nature of shotgun sequencing ensures that many of these organisms will be represented by at least some small sequence segments. Due to the limitations of microbial isolation methods, the vast majority of these organisms would go unnoticed using traditional culturing techniques.
Community metabolism
Many bacterial communities show significant division of labor in metabolism. Waste products of some organisms are metabolites for others. Working together they turn raw resources into fully metabolized waste. Using comparative gene studies and expression experiments with microarrays or proteomics researchers can piece together a metabolic network that goes beyond species boundaries. Such studies require detailed knowledge about which versions of which proteins are coded by which species and even by which strains of which species. Therefore, community genomic information is another fundamental tool (with metabolomics and proteomics) in the quest to determine how metabolites are transferred and transformed by a community.[32]
See also
- Pathogenomics
References
- ^ Marco, D, ed (2010). Metagenomics: Theory, Methods and Applications. Caister Academic Press. ISBN 978-1-904455-54-7.
- ^ Marco, D (editor) (2011). Metagenomics: Current Innovations and Future Trends. Caister Academic Press. ISBN 978-1-904455-87-5.
- ^ a b Hugenholz, P; Goebel BM, Pace NR (1 September 1998). "Impact of culture-independent studies on the emerging phylogenetic view of bacterial diversity". J. Bacteriol 180 (18): 4765–74. PMC 107498. PMID 9733676. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=107498.
- ^ Eisen, JA (2007). "Environmental shotgun sequencing: its potential and challenges for studying the hidden world of microbes.". PLoS Biology 5 (3): e82. doi:10.1371/journal.pbio.0050082. PMC 1821061. PMID 17355177. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1821061.
- ^ Handelsman, J; Rondon MR, Brady SF, Clardy J, Goodman RM (1998). "Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products". Chemistry & Biology 5: 245–249. doi:10.1016/S1074-5521(98)90108-9..
- ^ Chen, K; Pachter L (2005). "Bioinformatics for whole-genome shotgun sequencing of microbial communities". PLoS Comp Biol 1 (2): 24. Bibcode 2005PLSCB...1...24C. doi:10.1371/journal.pcbi.0010024. PMC 1185649. PMID 16110337. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1185649..
- ^ Lane, DJ; Pace B, Olsen GJ, Stahl DA, Sogin ML, Pace NR (1985). "Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses". Proceedings of the National Academy of Sciences 82 (20): 6955–9. Bibcode 1985PNAS...82.6955L. doi:10.1073/pnas.82.20.6955. PMC 391288. PMID 2413450. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=391288..
- ^ Pace, NR; DA Stahl, DJ Lane, GJ Olsen (1985). "Analyzing natural microbial populations by rRNA sequences". ASM News 51: 4–12. http://md1.csa.com/partners/viewrecord.php?requester=gs&collection=ENV&recid=913954&q=Analyzing+natural+microbial+populations+by+rRNA+sequences&uid=790164755&setcookie=yes..
- ^ Pace, NR; Delong, EF; Pace, NR (1991). "Analysis of a marine picoplankton community by 16S rRNA gene cloning and sequencing". Journal of Bacteriology 173 (14): 4371–4378. PMC 208098. PMID 2066334. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=208098..
- ^ Healy, FG; RM Ray, HC Aldrich, AC Wilkie, LO Ingram, KT Shanmugam (1995). "Direct isolation of functional genes encoding cellulases from the microbial consortia in a thermophilic, anaerobic digester maintained on lignocellulose". Appl. Microbiol Biotechnol. 43 (4): 667–74. doi:10.1007/BF00164771. PMID 7546604..
- ^ Stein, JL; TL Marsh, KY Wu, H Shizuya, EF DeLong (1996). "Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon". Journal of Bacteriology 178 (3): 591–599. PMC 177699. PMID 8550487. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=177699.
- ^ Beja, O.; Suzuki, MT; Koonin, EV; Aravind, L; Hadd, A; Nguyen, LP; Villacorta, R; Amjadi, M et al. (2000). "Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage". Environmental Microbiology 2 (5): 516–29. doi:10.1046/j.1462-2920.2000.00133.x. PMID 11233160.
- ^ Breitbart, M; Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D, Azam F, Rohwer F (2002). "Genomic analysis of uncultured marine viral communities". Proceedings of the National Academy USA 99 (22): 14250–14255. Bibcode 2002PNAS...9914250B. doi:10.1073/pnas.202488399. PMC 137870. PMID 12384570. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=137870..
- ^ a b Tyson, GW; Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM, Solovyev VV, Rubin EM, Rokhsar DS, Banfield JF (2004). "Insights into community structure and metabolism by reconstruction of microbial genomes from the environment". Nature 428 (6978): 37–43. doi:10.1038/nature02340. PMID 14961025. http://www.nature.com/nature/journal/v428/n6978/full/nature02340.html..
- ^ Hugenholz, P (2002). "Exploring prokaryotic diversity in the genomic era". Genome Biology 3: 1–8. doi:10.1186/gb-2002-3-2-reviews0003. PMC 139013. PMID 11864374. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=139013..
- ^ Venter, JC; Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu D, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers Y, Smith HO (2004). "Environmental Genome Shotgun Sequencing of the Sargasso Sea". Science 304 (5667): 66–74. Bibcode 2004Sci...304...66V. doi:10.1126/science.1093857. PMID 15001713..
- ^ Edwards, RA; Rodriguez-Brito B, Wegley L, Haynes M, Breitbart M, Peterson DM, Saar MO, Alexander S, Alexander EC, Rohwer F (2006). "Using pyrosequencing to shed light on deep mine microbial ecology". BMC Genomics 7: 57. doi:10.1186/1471-2164-7-57. PMC 1483832. PMID 16549033. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1483832..
- ^ Teeling, Hanno; Waldmann, Jost; Lombardot, Thierry; Bauer, Margarete; Oliver, Frank (2004). "TETRA: a web-service and a stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequences". BMC Bioinformatics 5 (163). doi:10.1186/1471-2105-5-163.
- ^ Zheng, Hao; Wu, Hongwei (2010). "Short prokaryotic DNA fragment binning using a hierarchical classifier based on linear discriminant analysis and principal component analysis.". J Bioinform Comput Biol. 8 (6): 995–1011. PMID 21121023.
- ^ Ghosh T S, Monzoorul HM, Mande S S (October 2010). "DiScRIBinATE: a rapid method for accurate taxonomic classification of metagenomic sequences". BMC Bioinformatics 25 (Suppl 7 : S14). doi:http://dx.crossref.org/10.1186%2F1471-2105-11-S7-S14. PMID 21106121.
- ^ Mohammed MH, Ghosh TS, Dinakar K, Mande SS (October 2010). "SPHINX—an algorithm for taxonomic binning of metagenomic sequences". Bioinformatics 27 (1): 22–30. doi:10.1093/bioinformatics/btq608. PMID 21030462.
- ^ http://computationalbioenergy.org/parallel-meta.html
- ^ Poinar, HN; Schwarz, C; Qi, J; Shapiro, B; MacPhee, RD; Buigues, B; Tikhonov, A; Huson, DH et al. (2006). "Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA.". Science 311 (5759): 392–4. Bibcode 2006Sci...311..392P. doi:10.1126/science.1123360. PMID 16368896.
- ^ Monzoorul HM, Tarini S, Dinakar K, Sharmila S M (May 2009). "SOrt-ITEMS : Sequence Orthology based approach for Improved Taxonomic Estimation of Metagenomic Sequences". Bioinformatics 25 (14): 1722–30. doi:10.1093/bioinformatics/btp317. PMID 19439565.
- ^ Meyer, F; Paarmann D, D'Souza M, Olson R, Glass EM, Kubal M, Paczian T, Rodriguez A, Stevens R, Wilke A, Wilkening J, Edwards RA (2008). "The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes". BMC Bioinformatics 9: 0. doi:10.1186/1471-2105-9-386. PMC 2563014. PMID 18803844. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2563014.
- ^ George I et al. (2010). "Application of Metagenomics to Bioremediation". Metagenomics: Theory, Methods and Applications. Caister Academic Press. ISBN 978-1-904455-54-7.
- ^ Wong D (2010). "Applications of Metagenomics for Industrial Bioproducts". Metagenomics: Theory, Methods and Applications. Caister Academic Press. ISBN 978-1-904455-54-7.
- ^ Nelson KE and White BA (2010). "Metagenomics and Its Applications to the Study of the Human Microbiome". Metagenomics: Theory, Methods and Applications. Caister Academic Press. ISBN 978-1-904455-54-7.
- ^ CharlesT (2010). "The Potential for Investigation of Plant-microbe Interactions Using Metagenomics Methods". Metagenomics: Theory, Methods and Applications. Caister Academic Press. ISBN 978-1-904455-54-7.
- ^ Kristensen, DM; Mushegian AR, Dolja VV, Koonin EV (2009). "New dimensions of the virus world discovered through metagenomics". Trends in Microbiology 18 (1): 11–19. doi:10.1016/j.tim.2009.11.003. PMID 19942437.
- ^ Allen, EE; Banfield, JF (2005). "Community genomics in microbial ecology and evolution". Nature Reviews Microbiology 3 (6): 489–498. doi:10.1038/nrmicro1157. PMID 15931167.
- ^ Klitgord, N.; Segrè, D. (2011). "Ecosystems biology of microbial metabolism". Current Opinion in Biotechnology 22 (4): 541–546. doi:10.1016/j.copbio.2011.04.018. PMID 21592777.
Further reading
Review articles
- Edwards RA, Rohwer F (June 2005). "Viral metagenomics". Nat. Rev. Microbiol. 3 (6): 504–10. doi:10.1038/nrmicro1163. PMID 15886693.
- Eisen, Jonathan A. (2007). "Environmental Shotgun Sequencing: Its Potential and Challenges for Studying the Hidden World of Microbes". PLoS Biology 5 (3): e82. doi:10.1371/journal.pbio.0050082. PMC 1821061. PMID 17355177. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1821061.
- Green, BD; Keller, M (2006). "Capturing the uncultivated majority.". Current opinion in biotechnology 17 (3): 236–40. doi:10.1016/j.copbio.2006.05.004. PMID 16701994.
- Handelsman J. (2004). "Metagenomics: application of genomics to uncultured microorganisms". Microbiology and Molecular Biology Reviews 68 (4): 669–685. doi:10.1128/MMBR.68.4.669-685.2004. PMC 539003. PMID 15590779. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=539003.
- Junca H. (2010). "Metabolic networks, microbial ecology and 'omics' technologies: towards understanding in situ biodegradation processes.". Environmental Microbiology 12 (12): 3089-30104. doi:10.1111/j.1462-2920.2010.02340.x. PMID 20860734.
- Keller, M.; Sengler, K. (2004). "Tapping into microbial diversity". Nature Reviews Microbiology 2 (2): 141–150. doi:10.1038/nrmicro819. PMID 15040261.
- Riesenfeld, C. S.; Schloss, PD; Handelsman, J (2004). "Metagenomics: genomic analysis of microbial communities". Annu Rev Genet 38: 525–52. doi:10.1146/annurev.genet.38.072902.091216. PMID 15568985.
- Rodriguez Valera, F. (2002). "Approaches to prokaryotic biodiversity: a population genetics perspective". Environmental Microbiology 4 (11): 628–33. doi:10.1046/j.1462-2920.2002.00354.x. PMID 12460270.
- Rodriguez-Valera F (2004). "Environmental genomics, the big picture?.". FEMS Microbiology Letters 231 (2): 153–158. doi:10.1016/S0378-1097(04)00006-0. PMID 15027428.
- Torsvik, V.; Ovreas, L. (2002). "Microbial diversity and function in soil: from genes to ecosystems". Current opinion in Microbiology 5 (3): 240–5. doi:10.1016/S1369-5274(02)00324-7. PMID 12057676.
- Whitaker, R. J.; Banfield, J. F. (2006). "Population genomics in natural microbial communities". Trends in Ecology & Evolution 21: 508–16. doi:10.1016/j.tree.2006.07.001.
- Worden, A. Z.; Cuvelier, ML; Bartlett, DH (2006). "In-depth analyses of marine microbial community genomics". Trends in Microbiology 14 (8): 331–6. doi:10.1016/j.tim.2006.06.008. PMID 16820296.
- Xu, J. P. (2006). "Microbial ecology in the age of genomics and metagenomics: concepts, tools, and recent advances". Molecular Ecology 15 (7): 1713–31. doi:10.1111/j.1365-294X.2006.02882.x. PMID 16689892.
Methods
- Beja, O.; Suzuki, MT; Koonin, EV; Aravind, L; Hadd, A; Nguyen, LP; Villacorta, R; Amjadi, M et al. (2000). "Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage". Environmental Microbiology 2 (5): 516–29. doi:10.1046/j.1462-2920.2000.00133.x. PMID 11233160.
- Sebat, J. L.; Colwell, FS; Crawford, RL (2003). "Metagenomic profiling: Microarray analysis of an environmental genomic library". Applied and Environmental Microbiology 69 (8): 4927–34. doi:10.1128/AEM.69.8.4927-4934.2003. PMC 169101. PMID 12902288. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=169101.
- Suzuki, M. T.; Preston, CM; Béjà, O; De La Torre, JR; Steward, GF; Delong, EF (2004). "Phylogenetic screening of ribosomal RNA gene-containing clones in bacterial artificial chromosome (BAC) libraries from different depths in Monterey Bay". Microbial Ecology 48 (4): 473–88. doi:10.1007/s00248-004-0213-5. PMID 15696381.
- Zhu, W.; Lomsadze, A.; Borodovsky, M. (2010). "Ab initio gene identification in metagenomic sequences". Nucleic Acids Research 38 (12): e132. doi:10.1093/nar/gkq275.
Bioinformatics
- Krause, L.; Diaz, N. N.; Goesmann, A.; Kelley, S.; Nattkemper, T. W.; Rohwer, F.; Edwards, R. A.; Stoye, J. (2008). "Phylogenetic classification of short environmental DNA fragments". Nucleic Acids Research 36 (7): 2230–9. doi:10.1093/nar/gkn038. PMC 2367736. PMID 18285365. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2367736.
- Huson, D. H.; Auch, A. F.; Qi, J.; Schuster, S. C. (2007). "MEGAN analysis of metagenomic data". Genome Research 17 (3): 377–86. doi:10.1101/gr.5969107. PMC 1800929. PMID 17255551. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1800929.
- Krause L, Diaz NN, Bartels D, et al. (July 2006). "Finding novel genes in bacterial communities isolated from the environment". Bioinformatics 22 (14): e281–9. doi:10.1093/bioinformatics/btl247. PMID 16873483. http://bioinformatics.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=16873483.
- Rodriguez-Brito B, Rohwer F, Edwards RA (2006). "An application of statistics to comparative metagenomics". BMC Bioinformatics 7: 162. doi:10.1186/1471-2105-7-162. PMC 1473205. PMID 16549025. http://www.biomedcentral.com/1471-2105/7/162.
- Raes J, Foerstner KU, Bork P (October 2007). "Get the most out of your metagenome: computational analysis of environmental sequence data". Curr. Opin. Microbiol. 10 (5): 490–8. doi:10.1016/j.mib.2007.09.001. PMID 17936679. http://linkinghub.elsevier.com/retrieve/pii/S1369-5274(07)00123-3.
- Harrington ED, Singh AH, Doerks T, et al. (August 2007). "Quantitative assessment of protein function prediction from metagenomics shotgun sequences". Proc. Natl. Acad. Sci. U.S.A. 104 (35): 13913–8. Bibcode 2007PNAS..10413913H. doi:10.1073/pnas.0702636104. PMC 1955820. PMID 17717083. http://www.pnas.org/cgi/pmidlookup?view=long&pmid=17717083.
- Tress, ML; Cozzetto, D; Tramontano, A; Valencia, A (2006). "An analysis of the Sargasso Sea resource and the consequences for database composition.". BMC bioinformatics 7: 213. doi:10.1186/1471-2105-7-213. PMC 1513258. PMID 16623953. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1513258.
- Foerstner KU, von Mering C, Hooper SD, Bork P (2005). "Environments shape the nucleotide composition of genomes". EMBO Rep. 6 (12): 1208–13. doi:10.1038/sj.embor.7400538. PMC 1369203. PMID 16200051. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1369203.
- Raes, J; Korbel, JO; Lercher, MJ; Von Mering, C; Bork, P (2007). "Prediction of effective genome size in metagenomic samples.". Genome biology 8 (1): R10. doi:10.1186/gb-2007-8-1-r10. PMC 1839125. PMID 17224063. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1839125.
- Von Mering, C; Hugenholtz, P; Raes, J; Tringe, SG; Doerks, T; Jensen, LJ; Ward, N; Bork, P (2007). "Quantitative phylogenetic assessment of microbial communities in diverse environments.". Science 315 (5815): 1126–30. Bibcode 2007Sci...315.1126V. doi:10.1126/science.1133420. PMID 17272687.
- Mavromatis K, Ivanova N, Barry K, et al. (June 2007). "Use of simulated data sets to evaluate the fidelity of metagenomic processing methods". Nat. Methods 4 (6): 495–500. doi:10.1038/nmeth1043. PMID 17468765.
- Markowitz VM, Ivanova N, Palaniappan K, et al. (July 2006). "An experimental metagenome data management and analysis system". Bioinformatics 22 (14): e359–67. doi:10.1093/bioinformatics/btl217. PMID 16873494. http://bioinformatics.oxfordjournals.org/cgi/pmidlookup?view=long&pmid=16873494.
- Markowitz, VM; Ivanova, NN; Szeto, E; Palaniappan, K; Chu, K; Dalevi, D; Chen, IM; Grechkin, Y et al. (2008). "IMG/M: a data management and analysis system for metagenomes.". Nucleic Acids Research 36 (Database issue): D534–8. doi:10.1093/nar/gkm869. PMC 2238950. PMID 17932063. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2238950.
- Pushker, R.; D'Auria, G.; Alba-Casado, J.C.; Rodríguez-Valera, F. (2005). "Micro-Mar: a database for dynamic representation of marine microbial biodiversity". BMC Bioinformatics 6: 222. doi:10.1186/1471-2105-6-222. http://www.biomedcentral.com/1471-2105/6/222.
- Meyer, F; Paarmann, D; D'souza, M; Olson, R; Glass, EM; Kubal, M; Paczian, T; Rodriguez, A et al. (2008). "The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes.". BMC bioinformatics 9: 386. doi:10.1186/1471-2105-9-386. PMC 2563014. PMID 18803844. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2563014.
- Hingamp P, Brochier C, Talla E, Gautheret D, Thieffry D, Herrmann Carl (2008). "Metagenome Annotation Using a Distributed Grid of Undergraduate Students". PLoS Biol 6 (11): e296. doi:10.1371/journal.pbio.0060296. http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0060296.
- Sun, Y.; Cai, Y.; Liu, L.; Yu, F.; Farrell, M. L.; McKendree, W.; Farmerie, W. (2009). "ESPRIT: estimating species richness using large collections of 16S rRNA pyrosequences". Nucleic Acids Research 37 (10): e76. doi:10.1093/nar/gkp285. PMC 2691849. PMID 19417062. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2691849.
Marine ecosystems
- Angly, F. E.; Felts, Ben; Breitbart, Mya; Salamon, Peter; Edwards, Robert A.; Carlson, Craig; Chan, Amy M.; Haynes, Matthew et al. (2006). "The marine viromes of four oceanic regions". PloS Biology 4: 2121–31. doi:10.1371/journal.pbio.0040368. http://biology.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pbio.0040368.
- Beja, O.; Aravind, L; Koonin, EV; Suzuki, MT; Hadd, A; Nguyen, LP; Jovanovich, SB; Gates, CM et al. (2000). "Bacterial rhodopsin: Evidence for a new type of phototrophy in the sea". Science 289 (5486): 1902–6. Bibcode 2000Sci...289.1902B. doi:10.1126/science.289.5486.1902. PMID 10988064.
- Beja, O.; Spudich, EN; Spudich, JL; Leclerc, M; Delong, EF (2001). "Proteorhodopsin phototrophy in the ocean". Nature 411 (6839): 786–9. doi:10.1038/35081051. PMID 11459054.
- Beja, O.; Suzuki, MT; Heidelberg, JF; Nelson, WC; Preston, CM; Hamada, T; Eisen, JA; Fraser, CM et al. (2002). "Unsuspected diversity among marine aerobic anoxygenic phototrophs". Nature 415 (6872): 630–3. doi:10.1038/415630a. PMID 11832943.
- Culley, A. I.; Lang, AS; Suttle, CA (2006). "Metagenomic analysis of coastal RNA virus communities". Science 312 (5781): 1795–8. Bibcode 2006Sci...312.1795C. doi:10.1126/science.1127404. PMID 16794078.
- DeLong, E. F.; Preston, CM; Mincer, T; Rich, V; Hallam, SJ; Frigaard, NU; Martinez, A; Sullivan, MB et al. (2006). "Community genomics among stratified microbial assemblages in the ocean's interior". Science 311 (5760): 496–503. Bibcode 2006Sci...311..496D. doi:10.1126/science.1120250. PMID 16439655.
- Hallam, S. J.; Konstantinidis, KT; Putnam, N; Schleper, C; Watanabe, Y; Sugahara, J; Preston, C; De La Torre, J et al. (2006). "Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum". Proceedings of the National Academy of Sciences of the United States of America 103 (48): 18296–301. Bibcode 2006PNAS..10318296H. doi:10.1073/pnas.0608549103. PMC 1643844. PMID 17114289. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1643844.
- John, D. E.; Wawrik, B; Tabita, FR; Paul, JH (2006). "Gene diversity and organization in rbcL-containing genome fragments from uncultivated Synechococcus in the Gulf of Mexico". Marine Ecology-Progress Series 316: 23–33. doi:10.3354/meps316023.
- Kannan, Natarajan; Taylor, Susan S.; Zhai, Yufeng; Venter, J. Craig; Manning, Gerard (2007). "Structural and Functional Diversity of the Microbial Kinome". PLoS Biology 5: 467–478. doi:10.1371/journal.pbio.0050017. PMC 1821047. PMID 17355172. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1821047.
- Rusch, Douglas B.; Halpern, Aaron L.; Sutton, Granger; Heidelberg, Karla B.; Williamson, Shannon; Yooseph, Shibu; Wu, Dongying; Eisen, Jonathan A. et al. (2007). "The Sorcerer II Global Ocean Sampling Expedition: Northwest Atlantic through Eastern Tropical Pacific". PLoS Biology 5: 398–431. doi:10.1371/journal.pbio.0050077. PMC 1821060. PMID 17355176. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1821060.
- Tringe SG, von Mering C, Kobayashi A, et al. (April 2005). "Comparative metagenomics of microbial communities". Science 308 (5721): 554–7. Bibcode 2005Sci...308..554T. doi:10.1126/science.1107851. PMID 15845853. http://www.sciencemag.org/cgi/pmidlookup?view=long&pmid=15845853.
- Woyke, T.; Teeling, H; Ivanova, NN; Huntemann, M; Richter, M; Gloeckner, FO; Boffelli, D; Anderson, IJ et al. (2006). "Symbiosis insights through metagenomic analysis of a microbial consortium". Nature 443 (7114): 950–5. Bibcode 2006Natur.443..950W. doi:10.1038/nature05192. PMID 16980956.
- Yooseph, Shibu; Sutton, Granger; Rusch, Douglas B.; Halpern, Aaron L.; Williamson, Shannon J.; Remington, Karin; Eisen, Jonathan A.; Heidelberg, Karla B. et al. (2007). "The Sorcerer II Global Ocean Sampling Expedition: Expanding the Universe of Protein Families". PLoS Biology 5: 432–466. doi:10.1371/journal.pbio.0050016. PMC 1821046. PMID 17355171. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1821046.
- Yutin, N.; Beja, O. (2005). "Putative novel photosynthetic reaction centre organizations in marine aerobic anoxygenic photosynthetic bacteria: insights from metagenomics and environmental genomics". Environmental Microbiology 7 (12): 2027–33. doi:10.1111/j.1462-2920.2005.00843.x. PMID 16309398.
- Mussmann, M; Richter, M; Lombardot, T; Meyerdierks, A; Kuever, J; Kube, M; Glöckner, FO; Amann, R (2005). "Clustered genes related to sulfate respiration in uncultured prokaryotes support the theory of their concomitant horizontal transfer.". Journal of bacteriology 187 (20): 7126–37. doi:10.1128/JB.187.20.7126-7137.2005. PMC 1251608. PMID 16199583. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1251608.
Sediments
- Abulencia, CB; Wyborski, DL; Garcia, JA; Podar, M; Chen, W; Chang, SH; Chang, HW; Watson, D et al. (2006). "Environmental whole-genome amplification to access microbial populations in contaminated sediments.". Applied and Environmental Microbiology 72 (5): 3291–3301. doi:10.1128/AEM.72.5.3291-3301.2006. PMC 1472342. PMID 16672469. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1472342.
- Breitbart M, Felts B, Kelley S, Mahaffy JM, Nulton J, Salamon P, Rohwer F (2004). "Diversity and population structure of a nearshore marine sediment viral community". Proceedings of the Royal Society B 271 (1539): 565–574. doi:10.1098/rspb.2003.2628. PMC 1691639. PMID 15156913. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1691639.
Extreme environments
- Baker, B. J.; Tyson, GW; Webb, RI; Flanagan, J; Hugenholtz, P; Allen, EE; Banfield, JF (2006). "Lineages of acidophilic archaea revealed by community genomic analysis". Science 314 (5807): 1933–5. Bibcode 2006Sci...314.1933B. doi:10.1126/science.1132690. PMID 17185602.
- Schoenfeld, T.; Patterson, M; Richardson, PM; Wommack, KE; Young, M; Mead, D (2008). "Assembly of Viral Metagenomes from Yellowstone Hot Springs". AEM 74 (13): 4166–74. doi:10.1128/AEM.02598-07. PMC 2446518. PMID 18441115. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2446518.
Medical sciences and biotechnological applications
- Arumugam M, Raes J, Peletier E, Le Paslier D, Yamada T, Mende DR, Fernandes GR, Tap J et al. (2011). "Enterotypes of the human gut microbiome". Nature 473 (7346): 174–80. Bibcode 2011Natur.473..174.. doi:10.1038/nature09944. PMID 21508958. http://www.nature.com/nature/journal/vaop/ncurrent/full/nature09944.html.
- Breitbart M, Hewson I, Felts B, Mahaffy JM, Nulton J, Salamon P, Rohwer F (2003). "Metagenomic analyses of an uncultured viral community from human feces". Journal of Bacteriology 185 (20): 6220–6223. doi:10.1128/JB.185.20.6220-6223.2003. PMC 225035. PMID 14526037. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=225035.
- Schloss, P. D.; Handelsman, J. (2003). "Biotechnological prospects from metagenomics". Current Opinion in Biotechnology 14 (3): 303–310. doi:10.1016/S0958-1669(03)00067-3. PMID 12849784.
- Brennerova, M; Josefiova, J; Brenner, V; Pieper, DH; Junca, H (2010). "Metagenomics reveals diversity and abundance of meta-cleavage pathways in microbial communities from soil highly contaminated with jet fuel under air-sparging bioremediation.". Environmental Microbiology 11 (9): 2216–2227. doi:10.1111/j.1462-2920.2009.01943.x. PMC 2784041. PMID 19575758. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2784041.
- Breitbart, M.; Rohwer, F. (2005). "Method for discovering novel DNA viruses in blood using viral particle selection and shotgun sequencing". BioTechniques 39 (5): 729–736. doi:10.2144/000112019. PMID 16312220.
- Mathur, E.; Toledo, G.; Green, B. D.; Podar, M.; Richardson, T. H.; Kulwiec, Michael; Chang, Hwai W. (2005). "A biodiversity-based approach to development of performance enzymes: Applied metagenomics and directed evolution". Industrial Biotechnology 1: 283–287. doi:10.1089/ind.2005.1.283.
- Zengler, Karsten; Paradkar, Ashish; Keller, Martin (2005). New Methods to Access Microbial Diversity for Small Molecule Discovery. pp. 275–293. doi:10.1007/978-1-59259-976-9_12.
- Zhang, T.; Breitbart, M.; Lee, W.H.; Run, J.Q.; Wei, C.L.; Soh, S.W.; Hibberd, M.L.; Liu, E.T. et al. (2006). "RNA viral community in human feces: prevalence of plant pathogenic viruses". PLoS biology 4 (1): e3. doi:10.1371/journal.pbio.0040003. PMC 1310650. PMID 16336043. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1310650.
- Gill, S. R.; Pop, M; Deboy, RT; Eckburg, PB; Turnbaugh, PJ; Samuel, BS; Gordon, JI; Relman, DA et al. (2006). "Metagenomic analysis of the human distal gut microbiome". Science 312 (5778): 1355–1359. Bibcode 2006Sci...312.1355G. doi:10.1126/science.1124234. PMID 16741115.
- Kurokawa, K.; Itoh, T; Kuwahara, T; Oshima, K; Toh, H; Toyoda, A; Takami, H; Morita, H et al. (2007). "Comparative metagenomics revealed commonly enriched gene sets in human gut microbiomes". DNA Res. 14 (4): 169–181. doi:10.1093/dnares/dsm018. PMC 2533590. PMID 17916580. http://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2533590.
Ancient DNA
- Poinar, H. N.; Schwarz, C.; Qi, Ji; Shapiro, B.; MacPhee, R. D. E.; Buigues, B.; Tikhonov, A.; Huson, D. H. et al. (2006). "Metagenomics to Paleogenomics: Large-Scale Sequencing of Mammoth DNA". Science 311 (5759): 392–394. Bibcode 2006Sci...311..392P. doi:10.1126/science.1123360. PMID 16368896. http://www.sciencemag.org/cgi/content/abstract/1123360v1?maxtoshow=&HITS=10&hits=10&RESULTFORMAT=&fulltext=wooly+mammoth&searchid=1135358119618_7589&FIRSTINDEX=0&journalcode=sci.
External links
- Wooley JC, Godzik A, Friedberg I (2010). "A primer on metagenomics". PLoS Comput. Biol. 6 (2): e1000667. Bibcode 2010PLSCB...610006W. doi:10.1371/journal.pcbi.1000667. PMC 2829047. PMID 20195499. http://dx.plos.org/10.1371/journal.pcbi.1000667.
- MEGAN MEtaGenome ANalyzer. A stand-alone metagenome analysis tool.
- Metagenomics and Our Microbial Planet A website on metagenomics and the vital role of microbes on Earth from the National Academies.
- The New Science of Metagenomics: Revealing the Secrets of Our Microbial Planet A report released by the National Research Council in March 2007. Also, see the Report In Brief.
- IMG/M The Integrated Microbial Genomes system, for metagenome analysis by the DOE-JGI.
- CAMERA Cyberinfrastructure for Metagenomics, data repository and tools for metagenomics research.
- A good overview of metagenomics from the Science Creative Quarterly
- list of Metagenome Projects from genomesonline.org
- MG-RAST publicly available, free, metagenomics annotation pipeline and repository for pyrosequences, Sanger sequences, and other sequence approaches.
- METAREP: JCVI Metagenomics Reports - an open source tool for high-performance comparative metagenomics
- Human microbiome project
- MetaHIT official website for the EU-funded project : Metagenomics of the Human Intestinal Tract
- Annotathon Bioinformatics Training Through Metagenomic Sequence Annotation
- Metagenomics Metagenomics research and applications.
- Metagenomics: Sequences from the Environment free ebook from NCBI Bookshelf.
Wikimedia Foundation. 2010.