Modulo operation

Modulo operation
Quotient (red) and remainder (green) functions using different algorithms.

In computing, the modulo operation finds the remainder of division of one number by another.

Given two positive numbers, a (the dividend) and n (the divisor), a modulo n (abbreviated as a mod n) can be thought of as the remainder, on division of a by n. For instance, the expression "5 mod 4" would evaluate to 1 because 5 divided by 4 leaves a remainder of 1, while "9 mod 3" would evaluate to 0 because the division of 9 by 3 leaves a remainder of 0; there is nothing to subtract from 9 after multiplying 3 times 3. (Notice that doing the division with a calculator won't show you the result referred to here by this operation, the quotient will be expressed as a decimal.) When either a or n is negative, this naive definition breaks down and programming languages differ in how these values are defined. Although typically performed with a and n both being integers, many computing systems allow other types of numeric operands. The range of numbers for an integer modulo of n is 0 to n - 1. (n mod 1 is always 0; n mod 0 is undefined, possibly resulting in a "Division by zero" error in computer programming languages) See modular arithmetic for an older and related convention applied in number theory.

Contents

Remainder calculation for the modulo operation

Integer modulo operators in various programming languages
Language Operator Result has the same sign as
ActionScript % Dividend
Ada mod Divisor
rem Dividend
ASP Mod Not defined
ALGOL-68 Always positive
AMPL mod Dividend
AppleScript mod Dividend
BASIC Mod Not defined
bc % Dividend
bash % Dividend
C (ISO 1990) % Implementation defined
C (ISO 1999) % Dividend
C++ % Implementation defined[1]
C# % Dividend
CLARION % Dividend
Clojure mod Divisor
ColdFusion % Dividend
Common Lisp mod Divisor
rem Dividend
D % Dividend[2]
Eiffel \\ Dividend
Erlang rem Dividend
Euphoria mod Divisor
remainder Dividend
FileMaker Mod Divisor
Fortran mod Dividend
modulo Divisor
GML (Game Maker) mod Dividend
Go % Dividend
Haskell mod Divisor
rem Dividend
J |~ Divisor
Java % Dividend
JavaScript % Dividend
Just Basic MOD Dividend
Lua 5 % Divisor
Lua 4 mod(x,y) Divisor
Liberty Basic MOD Dividend
MathCad mod(x,y) Divisor
Maple (software) e mod m Divisor
Mathematica Mod Divisor
Microsoft Excel =MOD() Divisor
MATLAB mod Divisor
rem Dividend
Oberon MOD Divisor
Objective Caml mod Dividend
Occam \ Dividend
Pascal (Delphi) mod Dividend
Pascal (ISO-7185 and ISO-10206) mod Always positive
Perl % Divisor[1]
PHP % Dividend
PL/I mod Divisor (ANSI PL/I)
PowerBuilder mod(x,y)  ?
PowerShell % Dividend
Progress modulo Dividend
Prolog (ISO 1995) mod Divisor
rem Dividend
Python % Divisor
RealBasic MOD Dividend
R %% Divisor
RPG %REM Dividend
Ruby %, modulus() Divisor
remainder() Dividend
Scheme modulo Divisor
remainder Dividend
Scheme R6RS mod Always positive[3]
mod0 Closest to zero[3]
SenseTalk modulo Divisor
rem Dividend
Smalltalk \\ Divisor
SQL (SQL:1999) mod(x,y) Dividend
Standard ML mod Divisor
Int.rem Dividend
Stata mod(x,y) Always positive
Tcl % Divisor
Torque Game Engine % Dividend
Turing mod Divisor
Verilog (2001) % Dividend
VHDL mod Divisor
rem Dividend
Visual Basic Mod Dividend
x86 Assembly IDIV Dividend
Floating-point modulo operators in various programming languages
Language Operator Result has the same sign as
C (ISO 1990) fmod  ?
C (ISO 1999) fmod Dividend
remainder Closest to zero
C++ (ISO 1998) std::fmod  ?
C++ (ISO 2011) std::fmod Dividend
std::remainder Closest to zero
C# % Dividend
Common Lisp mod Divisor
rem Dividend
D %  ?
Fortran mod Dividend
modulo Divisor
Go math.Fmod Dividend
Haskell (GHC) Data.Fixed.mod' Divisor
Java % Dividend
JavaScript % Dividend
Objective Caml mod_float Dividend
Perl POSIX::fmod Dividend
PHP fmod Dividend
Python % Divisor
math.fmod Dividend
Ruby %, modulus() Divisor
remainder() Dividend
Scheme R6RS flmod Always positive
flmod0 Closest to zero
Standard ML Real.rem Dividend

There are various ways of defining a remainder, and computers and calculators have various ways of storing and representing numbers, so what exactly constitutes the result of a modulo operation depends on the programming language and/or the underlying hardware.

In nearly all computing systems, the quotient q and the remainder r satisfy

q \in \mathbb{Z}
a = n \times q + r\,
\left| r \right| < \left| n \right|.

This means, that if the remainder is nonzero, there are two possible choices for the remainder, one negative and the other positive, and there are also two possible choices for the quotient. Usually, in number theory, the positive remainder is always chosen, but programming languages choose depending on the language and the signs of a and n.[2] However, Pascal and Algol68 give a positive remainder (or 0) even for negative divisors, and some programming languages, such as C89, don't even define a result if either of n or a is negative. See the table for details. a modulo 0 is undefined in the majority of systems, although some do define it to be a.

Many implementations use truncated division where the quotient is defined by truncation q = trunc(a/n), in other words it is the first integer in the direction of 0 from the exact rational quotient, and the remainder by r=an q. Informally speaking the quotient is "rounded towards zero", and the remainder therefore has the same sign as the dividend.

Knuth[4] described floored division where the quotient is defined by the floor function q=floor(a/n) and the remainder r is

r = a - nq = a - n \left\lfloor {a \over n} \right\rfloor.

Here the quotient is always rounded downwards (even if it is already negative) and the remainder has the same sign as the divisor.

Raymond T. Boute[5] introduces the Euclidean definition, which is the one in which the remainder is always positive or 0, and is therefore consistent with the division algorithm. This definition is marked as "Always positive" in the table. Let q be the integer quotient of a and n, then:

q \in \mathbb{Z}
a = n \times q + r\,
0 \leq r < |n|.

Two corollaries are that

n > 0 \Rightarrow q = \left\lfloor \frac{a}{n} \right\rfloor
n < 0 \Rightarrow q = \left\lceil \frac{a}{n} \right\rceil,

or, equivalently,

q = \sgn(n) \left\lfloor \frac{a}{\left|n\right|} \right\rfloor.

As described by Leijen,[6]

Boute argues that Euclidean division is superior to the other ones in terms of regularity and useful mathematical properties, although floored division, promoted by Knuth, is also a good definition. Despite its widespread use, truncated division is shown to be inferior to the other definitions.

Common Lisp also defines round- and ceiling-division where the quotient is given by q=round(a/n), q=ceil(a/n). IEEE 754 defines a remainder function where the quotient is a/n rounded according to the round to nearest convention.

Common pitfalls

When the result of a modulo operation has the sign of the dividend, it can sometimes lead to surprising mistakes:

For example, to test whether an integer is odd, one might be inclined to test whether the remainder by 2 is equal to 1:

bool is_odd(int n) {
    return n % 2 == 1;
}

But in a language where modulo has the sign of the dividend, that is incorrect, because when n (the dividend) is negative and odd, n % 2 returns -1, and the function returns false.

One correct alternative is to test that it is not 0 (because remainder 0 is the same regardless of the signs):

bool is_odd(int n) {
    return n % 2 != 0;
}

Modulo operation expression

Some calculators have a mod() function button, and many programming languages have a mod() function or similar, expressed as mod(a, n), for example. Some also support expressions that use "%", "mod", or "Mod" as a modulo or remainder operator, such as

a % n

or

a mod n

or equivalent, for environments lacking a mod() function

a - (n * int(a/n)).

In most cases a \mod n means modulo function and not remainder function. For example

a mod n = n * floor(a/n);
16 mod 7 = 7 * floor(16/7) = 7 * floor(2.285714286) = 7 * 0.285714286 = 2;
this is because (16 mod 7) = 16 - 7 * 2 = 2.

Performance issues

Modulo operations might be implemented such that a division with a remainder is calculated each time. For special cases, there are faster alternatives on some hardware. For example, the modulo of powers of 2 can alternatively be expressed as a bitwise AND operation:

x % 2n == x & (2n - 1).

Examples (assuming x is a positive integer):

x % 2 == x & 1
x % 4 == x & 3
x % 8 == x & 7.

In devices and software that implement bitwise operations more efficiently than modulo, these alternative forms can result in faster calculations.

Optimizing C compilers generally recognize expressions of the form expression % constant where constant is a power of two and automatically implement them as expression & (constant-1). This can allow the programmer to write clearer code without compromising performance. (Note: This will not work for the languages whose modulo have the sign of the dividend (including C), because if the dividend is negative, the modulo will be negative; however, expression & (constant-1) will always produce a positive result. So special treatment has to be made when the dividend is negative.)

In some compilers, the modulo operation is implemented as mod(a, n) = a - n * floor(a / n). For example, mod(7, 3) = 7 - 3 * floor(7 / 3) = 7 - 3 * floor(2.33) = 7 - 3 * 2 = 7 - 6 = 1.

See also

Notes

References

  1. ^ ISO/IEC 14882:2003 : Programming languages -- C++. 5.6.4: ISO, IEC. 2003 . "the binary % operator yields the remainder from the division of the first expression by the second. .... If both operands are nonnegative then the remainder is nonnegative; if not, the sign of the remainder is implementation-defined".
  2. ^ "Expressions". D Programming Language 2.0. Digital Mars. http://www.digitalmars.com/d/2.0/expression.html#MulExpression. Retrieved 29 July 2010. 
  3. ^ a b http://www.r6rs.org/final/html/r6rs/r6rs-Z-H-14.html#node_sec_11.7.3.1
  4. ^ Knuth, Donald. E. (1972). The Art of Computer Programming. Addison-Wesley. 
  5. ^ Boute, Raymond T. (April 1992). "The Euclidean definition of the functions div and mod". ACM Transactions on Programming Languages and Systems (TOPLAS) (ACM Press (New York, NY, USA)) 14 (2): 127–144. doi:10.1145/128861.128862. http://portal.acm.org/citation.cfm?id=128862&coll=portal&dl=ACM. 
  6. ^ Leijen, Daan (December 3, 2001). "Division and Modulus for Computer Scientists" (PDF). http://www.cs.uu.nl/~daan/download/papers/divmodnote.pdf. Retrieved 2006-08-27. 

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Modulo (jargon) — The word modulo (Latin, with respect to a modulus of ) is the Latin ablative of modulus which itself means a small measure. It was introduced into mathematics in the book Disquisitiones Arithmeticae by Carl Friedrich Gauss in 1801. Ever since,… …   Wikipedia

  • Modulo — In the mathematical community, the word modulo is often used informally. Generally, to say A is the same as B modulo C means, more or less, A and B are the same except for differences accounted for or explained by C . In the various branches of… …   Wikipedia

  • Modulo (informatique) — Une très grande part des calculs réalisés en informatique sont des calculs d arithmétique modulaire (d autres se font, par exemple, en arithmétique saturée). En effet, les données manipulées sont toujours représentées au final comme une suite… …   Wikipédia en Français

  • Operation: ZERO — Este artículo o sección sobre películas necesita ser wikificado con un formato acorde a las convenciones de estilo. Por favor, edítalo para que las cumpla. Mientras tanto, no elimines este aviso puesto el 14 de octubre de 2007. También puedes… …   Wikipedia Español

  • Operation (Mathematik) — In der Mathematik tritt der Begriff der Operation (auch Wirkung oder Aktion) bei der Betrachtung von Gruppen und ihrem Zusammenspiel mit anderen Strukturen auf. Inhaltsverzeichnis 1 Einführendes Beispiel: Operation der Symmetriegruppe eines… …   Deutsch Wikipedia

  • modulo — 1. preposition /ˈmɒdjʊləʊ/ a) Given a specified modulus of. 21 and 84 are congruent to each other modulo 9, since both numbers leave the same remainder, 3, when divided by 9. b) Except for differences accounted for by. Thus 21 modulo 9 is 3,… …   Wiktionary

  • Arithmétique modulo — Arithmétique modulaire Couverture de l’édition originale des Recherches arithmétiques de Gauss, livre fondateur de l’arithmétique modulaire. En mathématiques et plus précisément en théorie algébrique des nombres, l’arithmétique modulaire est un… …   Wikipédia en Français

  • Congruence modulo — Congruence sur les entiers Pour les articles homonymes, voir Congruence. La congruence sur les entiers est une relation pouvant unir deux entiers. Elle fut pour la première fois étudiée en tant que structure par le mathématicien allemand Carl… …   Wikipédia en Français

  • Primitive root modulo n — In modular arithmetic, a branch of number theory, a primitive root modulo n is any number g with the property that any number coprime to n is congruent to a power of g (mod n ). That is, if g is a primitive root (mod n ) and gcd( a , n ) = 1,… …   Wikipedia

  • Cryptanalyse Modulo n — Cryptanalyse Mod n En cryptologie, la cryptanalyse mod n est une attaque applicable aux chiffrements par bloc et aux chiffrements par flot. C est une forme de cryptanalyse partitionnelle utilisant l arithmétique modulaire. Elle exploite le fait… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”