Doubling the cube

Doubling the cube

Doubling the cube (also known as the Delian problem) is one of the three most famous geometric problems unsolvable by compass and straightedge construction. It was known to the Egyptians, Greeks, and Indians.[1]

To "double the cube" means to be given a cube of some side length s and volume V, and to construct a new cube, larger than the first, with volume 2V and therefore side length s\cdot\sqrt[3]{2}. The problem is known to be impossible to solve with only compass and straightedge, because \sqrt[3]{2} ≈ 1.25992105 is not a constructible number.

Contents

History

The problem owes its name to a story concerning the citizens of Delos, who consulted the oracle at Delphi in order to learn how to defeat a plague sent by Apollo.[2] According to Plutarch[3] it was the citizens of Delos who consulted the oracle at Delphi, seeking a solution for their internal political problems at the time, which had intensified relationships among the citizens. The oracle responded that they must double the size of the altar to Apollo, which was a regular cube. The answer seemed strange to the Delians and they consulted Plato, who was able to interpret the oracle as the mathematical problem of doubling the volume of a given cube, thus explaining the oracle as the advice of Apollo for the citizens of Delos to occupy themselves with the study of geometry and mathematics in order to calm down their passions.[4]

According to Plutarch, Plato gave the problem to Eudoxus and Archytas and Menaechmus who solved the problem using mechanical means, earning a rebuke from Plato for not solving the problem using pure geometry (Plut., Quaestiones convivales VIII.ii, 718ef). This may be why the problem is referred to in the 350s BC by the author of the pseudo-Platonic Sisyphus (388e) as still unsolved.[5] However another version of the story says that all three found solutions but they were too abstract to be of practical value[citation needed].

A significant development in finding a solution to the problem was the discovery by Hippocrates of Chios that it is equivalent to finding two mean proportionals between a line segment and another with twice the length.[6] In modern notation, this means that given segments of lengths a and 2a, the duplication of the cube is equivalent to finding segments of lengths r and s so that

a:r=r:s=s:2a.\

Pierre Wantzel proved in 1837 that the cube root of 2 is not constructible; that is, that it cannot be constructed with ruler and compass.

Solutions

Menaechmus' original solution involves the intersection of two conic curves. Other more complicated methods of doubling the cube involve the cissoid of Diocles, the conchoid of Nicomedes, or the Philo line. Archytas solved the problem in the fourth century B.C. using geometric construction in three dimensions, determining a certain point as the intersection of three surfaces of revolution.

False claims of doubling the cube with compass and straightedge abound in mathematical crank literature (pseudomathematics).

References

  1. ^ Lucye Guilbeau (1930). "The History of the Solution of the Cubic Equation", Mathematics News Letter 5 (4), pp. 8–12.
  2. ^ L. Zhmud The origin of the history of science in classical antiquity, p.84, quoting Plutarch and Theon of Smyrna
  3. ^ Plutarch, De E apud Delphos 386.E.4
  4. ^ Plutarch, De genio Socratis 579.B
  5. ^ Carl Werner Müller, Die Kurzdialoge der Appendix Platonica, Munich: Wilhelm Fink, 1975, pp. 105-106
  6. ^ T.L. Heath A history of Greek mathematics, Vol. 1]

External links

homas Heath.


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Doubling — may refer to: in maths: multiplication by 2 doubling the cube, a geometric problem doubling time, the period of time required for a quantity to double in size or value doubling map period doubling bifurcation in music, the composition or… …   Wikipedia

  • duplication of the cube — duplication du pli*ca tion, n. [L. duplicatio: cf. F. duplication.] 1. The act of duplicating, or the state of being duplicated; a doubling; a folding over; a fold. [1913 Webster] 2. (Biol.) The act or process of dividing by natural growth or… …   The Collaborative International Dictionary of English

  • Cube root — Plot of y = for . Complete plot is symmetric with respect to origin, as it is an odd function. At x = 0 this graph has a vertical tangent. In mathematics, a cube root of a number, denoted …   Wikipedia

  • The Parrot's Theorem — infobox Book | name = The Parrot s Theorem title orig = translator = Frank Wynne image caption = First edition cover author = Denis Guedj cover artist = country = France language = French series = genre = Novel publisher = Weidenfeld Nicolson… …   Wikipedia

  • Squaring the circle — Squaring the circle: the areas of this square and this circle are equal. In 1882, it was proven that this figure cannot be constructed in a finite number of steps with an idealized compass and straightedge …   Wikipedia

  • Aristarchus On the Sizes and Distances — Aristarchus s 3rd century BC calculations on the relative sizes of, from left, the Sun, Earth and Moon, from a 10th century CE Greek copy On the Sizes and Distances (of the Sun and Moon) (Περὶ μεγεθῶν καὶ ἀποστημάτων [ἡλίου καὶ σελήνης]) is… …   Wikipedia

  • doubling cube — noun : a cube used in backgammon to indicate the current value of the stake as a a result of doubling …   Useful english dictionary

  • Mathematics of paper folding — The art of origami or paper folding has received a considerable amount of mathematical study. Fields of interest include a given paper model s flat foldability (whether the model can be flattened without damaging it) and the use of paper folds to …   Wikipedia

  • Angle trisection — The problem of trisecting the angle is a classic problem of compass and straightedge constructions of ancient Greek mathematics.Two tools are allowed # An un marked straightedge, and # a compass, Problem: construct an angle one third a given… …   Wikipedia

  • Hilbert's third problem — The third on Hilbert s list of mathematical problems, presented in 1900, is the easiest one. The problem is related to the following question: given any two polyhedra of equal volume, is it always possible to cut the first into finitely many… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”