# Angle trisection

Angle trisection

The problem of trisecting the angle is a classic problem of compass and straightedge constructions of ancient Greek mathematics.Two tools are allowed
# An un-marked straightedge, "and"
# a compass,

Problem: construct an angle one-third a given arbitrary angle.

With such tools, it is generally impossible. This requires taking a cube root, impossible with the given tools; see below.

A common misunderstanding

It is common to hear "It is impossible to trisect an angle! "Q.E.D." Leaving aside the lack of proof, this statement is false: it is only impossible to solve "in general" using only an un-marked straightedge and a compass, i.e. it may be done by using other tools, "and", some angles may be trisected with a straightedge and a compass.

Perspective and relationship to other problems

[ Bisection of arbitrary angles has long been solved.] Using only an unmarked straightedge and a compass, Greek mathematicians found means to divide a line into an arbitrary set of equal segments, to draw parallel lines, to bisect angles, to construct many polygons, and to construct squares of equal or twice the area of a given polygon.

Three problems proved elusive, specifically:

* Trisecting the angle,
* Doubling the cube, "and"
* Squaring the circle

Angles may not in general be trisected

Denote the rational numbers $mathbb\left\{Q\right\}$.

Note that a number constructible in one step from a field $K$ is a solution of a second-order polynomial; again, see constructible number. Note also that $pi/3$ radians (60 degrees, written 60°) is constructible.

However, the angle of $pi/3$ radians (60 degrees) cannot be trisected. Note $cos\left(pi/3\right) = cos\left(60^circ\right) = 1/2$.

If 60° could be trisected, the minimal polynomial of $cos\left(20^circ\right)$ over $mathbb\left\{Q\right\}$ would be of second order. Note the trigonometric identity $cos\left(3alpha\right) = 4cos^\left\{3\right\}\left(alpha\right) - 3cos\left(alpha\right)$. Now let $y = cos\left(20^circ\right)$.

By the above identity, $cos\left(60^circ\right) = 1/2 = 4y^\left\{3\right\} - 3y$. So $4y^\left\{3\right\} - 3y - 1/2 = 0$. Multiplying by two yields $8y^\left\{3\right\} - 6y - 1 = 0$, or $\left(2y\right)^\left\{3\right\} - 3\left(2y\right) - 1 = 0$. Now substitute $x = 2y$, so that $x^\left\{3\right\} - 3x - 1 = 0$. Let $p\left(x\right) = x^\left\{3\right\} - 3x - 1$.

The minimal polynomial for "x" (hence $cos\left(20^circ\right)$) is a factor of $p\left(x\right)$. If $p\left(x\right)$ has a rational root, by the rational root theorem, it must be 1 or −1, both clearly not roots. Therefore $p\left(x\right)$ is irreducible over $mathbb\left\{Q\right\}$, and the minimal polynomial for $cos\left(20^circ\right)$ is of degree 3.

So an angle of $60^circ = pi/3$ radians cannot be trisected.

ome angles may be trisected

However, some angles may be trisected. Given angle $heta$, angle $3 heta$ trivially trisects to $heta$. More notably, $2pi/5$ radians (72°) may be constructed, and may be trisected. [http://www.physicsforums.com/showthread.php?t=160571] Also there are angles, while non-constructable, but (if somehow given) are trisectable, for example $3pi/7$. [Five copies of $3pi/7$ combine to make $15pi/7$ which is a full circle plus $pi/7$.]

One general theorem

Again, denote the rational numbers $Q$:

Theorem: The angle $heta$ may be trisected if and only if $q\left(t\right) = 4t^\left\{3\right\}-3t-cos\left(3 heta\right)$ is reducible over the field extension $Q\left(cos\left( heta\right)\right)$.

Proof. The proof would take us afield, but it may be derived from the above trig identity.cite book | last = Stewart | first = Ian | authorlink = Ian Stewart (mathematician)|Ian Stewart | title = "Galois Theory" | publisher = Chapman and Hall Mathematics | date = 1989 | pages = pg. 58 | doi = | isbn = 0412345501]

Means to trisect angles by going outside the Greek framework

Origami

Trisection, like many constructions impossible by ruler and compass, can easily be accomplished by the more powerful (but physically easy) operations of paper folding, or origami. Huzita's axioms (types of folding operations) can construct cubic extensions (cube roots) of given lengths, whereas ruler-and-compass can construct only quadratic extensions (square roots). See mathematics of paper folding.

Auxiliary curve

There are certain curves called trisectrices which, if drawn on the plane using other methods, can be used to trisect arbitrary angles. [ [http://www.jimloy.com/geometry/trisect.htm#curves Trisection of an Angle ] ]

With a marked ruler

Another means to trisect an arbitrary angle by a "small" step outside the Greek framework is via a ruler with two marks a set distance apart. The next construction is originally due to Archimedes, called a "Neusis construction", i.e., that uses tools other than an "un-marked" straightedge.

This requires three facts from geometry (at right):

# Any full set of angles on a straight line add to 180°,
# The sum of angles of any triangle is 180°, "and",
# Any two equal sides of an isosceles triangle meet the third in the same angle.

Look to the diagram at right; note angle "a" left of point "B". We trisect angle "a".

First, a ruler has two marks distance "AB" apart. Extend the lines of the angle and draw a circle of radius "AB".

"Anchor" the ruler at point "A", and move it until one mark is at point "C", one at point "D", i.e., "CD = AB". A radius "BC" is drawn as obvious. Triangle "BCD" has two equal sides, thus is isosceles.

That is to say, line segments "AB", "BC", and "CD" all have equal length. Segment "AC" is irrelevant.

Now: Triangles "ABC" and "BCD" are isosceles, thus by Fact 3 each has two equal angles. Now re-draw the diagram, and label all angles:

Hypothesis: Given "AD" is a straight line, and "AB", "BC", and "CD" are all equal length,

Conclusion: angle $b = \left(1/3\right) a$.
Proof:

Steps:

# From Fact 1) above, $e + c = 180$°.
# Looking at triangle "BCD", from Fact 2) $e + 2b = 180$°.
# From the last two equations, $c = 2b$.
# From Fact 2), $d + 2c = 180$°, thus $d = 180$°$- 2c$, so from last, $d = 180$°$- 4b$.
# From Fact 1) above, $a + d + b = 180$°, thus $a + \left(180$°$- 4b\right) + b = 180$°.

Clearing, $a - 3b = 0$, or $a = 3b$, and the theorem is proved.

Again: this construction stepped outside the framework of allowed constructions by using a marked straightedge. There is an unavoidable element of inaccuracy in placing the straightedge.

With a string

Hutcheson published an article in Mathematics Teacher, vol. 94, No. 5, May, 2001 that used a string instead of a compass and straight edge. A string can be used as either a straight edge (by stretching it) or a compass (by fixing one point and identifying another), but can also wrap around a cylinder, the key to Hutcheson's solution.

Hutcheson constructed a cylinder from the angle to be trisected by drawing an arc across the angle, completing it as a circle, and constructing from that circle a cylinder on which a, say, equilateral triangle was inscribed (a 360-degree angle divided in three). This was then "mapped" onto the angle to be trisected, with a simple proof of similar triangles.

For the detailed proof and its generalization, see the article cited: Mathematics Teacher, vol. 94, No. 5, May, 2001, pp. 400-405.

There are other constructions (references).

*Bisection
*Constructible number
*Constructible polygon
*Doubling the cube
*Euclidean geometry
*Galois theory
*History of geometry
*Intercept theorem
*List of geometry topics
*Morley's trisector theorem
*Neusis construction
*Squaring the circle
*Tomahawk (geometric shape)
*Trisectrix

Notes

External references

* [http://mathworld.wolfram.com/AngleTrisection.html MathWorld site]
* [http://mathworld.wolfram.com/GeometricProblemsofAntiquity.html Geometric problems of antiquity, including angle trisection]
* [http://www-history.mcs.st-andrews.ac.uk/HistTopics/Trisecting_an_angle.html Some history]
* [http://www.uwgb.edu/dutchs/PSEUDOSC/trisect.HTM One link of marked ruler construction]
* [http://www.cut-the-knot.org/pythagoras/archi.shtml Another, mentioning Archimedes]
* [http://www.jimloy.com/geometry/trisect.htm A long article with many approximations & means going outside the Greek framework]
* [http://www.geom.uiuc.edu/docs/forum/angtri/ Geometry site]

Other means of trisection

* [http://www.uwgb.edu/dutchs/PSEUDOSC/trisect.HTM Trisecting via] an "Archimedean Spiral"
* [http://xahlee.org/SpecialPlaneCurves_dir/ConchoidOfNicomedes_dir/conchoidOfNicomedes.html Trisecting via] the "Conchoid of Nicomedes"
* [http://www.sciencenews.org/articles/20070602/mathtrek.asp sciencenews.org site] on using origami
* [http://www.song-of-songs.net/Star-of-David-Flower-of-Life.html Hyperbolic trisection and the spectrum of regular polygons]

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Trisection — de l angle La trisection de l angle est un problème classique de mathématiques. C est un problème géométrique, faisant partie des trois grands problèmes de l Antiquité, avec la quadrature du cercle et la duplication du cube. Ce problème consiste… …   Wikipédia en Français

• Trisection de l’angle — Trisection de l angle La trisection de l angle est un problème classique de mathématiques. C est un problème géométrique, faisant partie des trois grands problèmes de l Antiquité, avec la quadrature du cercle et la duplication du cube. Ce… …   Wikipédia en Français

• trisection — [ trisɛksjɔ̃ ] n. f. • 1691; de tri et section ♦ Géom. Division d une grandeur en trois parties égales. La trisection de l angle. ● trisection nom féminin Division d un ensemble, d une grandeur en trois parties égales. Détermination d un secteur… …   Encyclopédie Universelle

• Trisection de l'angle — La trisection de l angle est un problème classique de mathématiques. C est un problème géométrique, faisant partie des trois grands problèmes de l Antiquité, avec la quadrature du cercle et la duplication du cube. Ce problème consiste à diviser… …   Wikipédia en Français

• angle — [ ɑ̃gl ] n. m. • XIIe; lat. angulus 1 ♦ Cour. Saillant ou rentrant formé par deux lignes ou deux surfaces qui se coupent. ⇒ arête, coin, encoignure, renfoncement. À l angle de la rue. Former un angle, être en angle. La maison qui fait l angle,… …   Encyclopédie Universelle

• Trisection — Tri*sec tion, n. [Cf. F. trisection.] The division of a thing into three parts, Specifically: (Geom.) the division of an angle into three equal parts. [1913 Webster] …   The Collaborative International Dictionary of English

• Trisection — (v. lat.), Theilung des Winkels in drei gleiche Theile; ähnlich ist die Multisection, d.i. Theilung in irgend viel gleiche Theile. Vgl. Azumar, Trisection de l angle, Par. 1809 …   Pierer's Universal-Lexikon

• trisection — (tri sè ksion) s. f. Division d une chose en trois parties.    Terme de géométrie. Division en trois parties égales. •   La trisection de l angle, problème fameux chez les anciens, et qui les a beaucoup exercés, FONTEN. Viviani..    Terme de… …   Dictionnaire de la Langue Française d'Émile Littré

• TRISECTION — s. f. (On prononce l S fortement. ) T. de Géom. Division d une chose en trois parties égales. Il se dit principalement de La division d un angle en trois angles égaux. La trisection de l angle …   Dictionnaire de l'Academie Francaise, 7eme edition (1835)

• TRISECTION — n. f. T. de Géométrie Division d’une chose en trois parties égales. Il se dit principalement de la Division d’un angle en trois angles égaux. La trisection de l’angle …   Dictionnaire de l'Academie Francaise, 8eme edition (1935)