Fractional crystallization (geology)

Fractional crystallization (geology)
Crystallization
Snow crystallization in Akureyri 2005-02-26 19-03-37.jpeg
Concepts
Crystallization · Crystal growth
Fractional crystallization
Recrystallization · Seed crystal
Single crystal
Fundamentals
Nucleation · Crystal
Crystal structure · Solid
v ·
Schematic diagrams showing the principles behind fractional crystallisation in a magma. While cooling, the magma evolves in composition because different minerals crystallize from the melt. 1: olivine crystallizes; 2: olivine and pyroxene crystallize; 3: pyroxene and plagioclase crystallize; 4: plagioclase crystallizes. At the bottom of the magma reservoir, a cumulate rock forms.

Fractional crystallization is one of the most important geochemical and physical processes operating within the Earth's crust and mantle. Fractional crystallization is the removal and segregation from a melt of mineral precipitates; except in special cases, removal of the crystals changes the composition of the magma. Fractional crystallization in silicate melts (magmas) is complex compared to crystallization in chemical systems at constant pressure and composition, because changes in pressure and composition can have dramatic effects on magma evolution. Addition and loss of water, carbon dioxide, hydrogen, and oxygen are among the compositional changes that must be considered. For example, the partial pressure (fugacity) of water in silicate melts can be of prime importance, as in near-solidus crystallization of magmas of granite composition. The crystallization sequence of oxide minerals such as magnetite and ulvospinel is sensitive to the oxygen fugacity of melts, and separation of the oxide phases can be an important control of silica concentration in the evolving magma, and may be important in andesite genesis.

Experiments have provided many examples of the complexities that control which mineral is crystallized first as the melt cools down past the liquidus.

One example concerns crystallization of melts that crystallize to mafic and ultramafic rocks. MgO and SiO2 concentrations in melts are among the variables that determine whether forsterite olivine or enstatite pyroxene is precipitated, but the water content and pressure are also important. In some compositions, at high pressures without water crystallization of enstatite is favored, but in the presence of water at high pressures, olivine is favored.

Granitic magmas provide additional examples of how melts of generally similar composition and temperature, but at different pressure, may crystallize different minerals. Pressure determines the maximum water content of a magma of granite composition. High-temperature fractional crystallization of relatively water-poor granite magmas may produce single-alkali-feldspar granite, and lower-temperature crystallization of relatively water-rich magma may produce two-feldspar granite.

During the process of fractional crystallization, melts become enriched in incompatible elements. Hence, knowledge of the crystallization sequence is critical in understanding how melt compositions evolve. Textures of rocks provide insights, as documented in the early 1900s by Bowen's reaction series. Experimentally-determined phase diagrams for simple mixtures provide insights into general principles. Numerical calculations with special software have become increasingly able to simulate natural processes accurately.

See also

References


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • Fractional crystallization — may refer to:* Fractional crystallization (chemistry), a process to separate different solutes from a solution * Fractional crystallization (geology), a natural process occurring in igneous rocks during which precipitation of minerals takes place …   Wikipedia

  • Geology of the Moon — The geology of the Moon (sometimes called selenology, although the latter term can refer more generally to lunar science ) is quite different from that of the Earth. The Moon lacks a significant atmosphere and any bodies of water, which… …   Wikipedia

  • Geology of Mars — Mars   Mars as seen by the Hubble Space Telescope Designations …   Wikipedia

  • Andesite — For the extinct cephalopod genus, see Andesites. Andesite (pronEng|ˈændəsaɪt) is an igneous, volcanic rock, of intermediate composition, with aphanitic to porphyritic texture. The mineral assemblage is typically dominated by plagioclase plus… …   Wikipedia

  • Igneous differentiation — In geology, igneous differentiation is an umbrella term for the various processes by which magmas undergo bulk chemical change during the partial melting process, cooling, emplacement or eruption. Contents 1 Definitions 1.1 Primary melts 1.2… …   Wikipedia

  • igneous rock — Any of various crystalline or glassy, noncrystalline rocks formed by the cooling and solidification of molten earth material (magma). Igneous rocks comprise one of the three principal classes of rocks, the others being metamorphic and sedimentary …   Universalium

  • chemical element — Introduction also called  element,         any substance that cannot be decomposed into simpler substances by ordinary chemical processes. Elements are the fundamental materials of which all matter is composed.       This article considers the… …   Universalium

  • Superior craton — in the west. The western margin extends from northern Minnesota through eastern Manitoba to northwestern Ontario.The formation of the Superior craton is best explained within the context of 2.72 2.68 Ga accretion of small continental plates and… …   Wikipedia

  • Mount Rinjani — 1995 eruption Elevation 3,726 m (12,224 ft)  …   Wikipedia

  • Recrystallization — (see also crystallization) is a physical process that has meanings in chemistry, metallurgy and geology.ChemistryIn chemistry, recrystallization is a procedure for purifying compounds. The most typical situation is that a desired compound A is… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”