Dynamic braking

Dynamic braking
Norfolk Southern Unit #5348 with a Dynamic brake. The cooling grill for the brake grid resistors is at the top center of the locomotive.

Dynamic braking is the use of the electric traction motors of a railroad vehicle as generators when slowing the Locomotive. It is termed rheostatic if the generated electrical power is dissipated as heat in brake grid resistors, and regenerative if the power is returned to the supply line. Dynamic braking lowers the wear of friction-based braking components, and additionally regeneration can also lower energy consumption.


Principle of operation

During braking, the motor fields are connected across either the main traction generator (diesel-electric loco) or the supply (electric locomotive) and the motor armatures are connected across either the brake grids or supply line. The rolling locomotive wheels turn the motor armatures, and if the motor fields are now excited, the motors will act as generators.

For a given direction of travel, current flow through the motor armatures during braking will be opposite to that during motoring. Therefore, the motor exerts torque in a direction that is opposite from the rolling direction. Braking effort is proportional to the product of the magnetic strength of the field windings, times that of the armature windings.

For permanent magnet motors, dynamic braking is easily achieved by shorting the motor terminals, thus bringing the motor to a fast abrupt stop. This method, however, dissipates all the energy as heat in the motor itself, and so cannot be used in anything other than low-power intermittent applications due to cooling limitations. It is not suitable for traction applications.

Rheostatic braking

The electrical energy produced by the motors is dissipated as heat by a bank of onboard resistors. Large cooling fans are necessary to protect the resistors from damage. Modern systems have thermal monitoring, so if the temperature of the bank becomes excessive, it will be switched off, and the braking will revert to air only.

Regenerative braking

In electrified systems the similar process of regenerative braking is employed whereby the current produced during braking is fed back into the power supply system for use by other traction units, instead of being wasted as heat. It is normal practice to incorporate both regenerative and rheostatic braking in electrified systems. If the power supply system is not "receptive", i.e. incapable of absorbing the current, the system will default to rheostatic mode in order to provide the braking effect.

Yard locomotives with onboard energy storage systems which allow the recovery of some of this energy which would otherwise be wasted as heat are now available. The Green Goat model, for example, is being used by Canadian Pacific Railway, BNSF Railway, Kansas City Southern Railway and Union Pacific Railroad.

Blended braking

A picture of an ex-Connex Class 466 EMU at Blackfriars station in the year 2006. The popular Class 466 EMUs use Dynamic blended braking.

Dynamic braking alone is insufficient to stop a locomotive, as its braking effect rapidly diminishes below about 10 to 12 miles per hour (16 to 19 km/h). Therefore it is always used in conjunction with the regular air brake. This combined system is called blended braking. Li-ion batteries have also been used to store energy for use in bringing trains to a complete halt.[1]

Although blended braking combines both dynamic and air braking, the resulting braking force is designed to be the same as what the air brakes on their own provide. This is achieved by maximizing the dynamic brake portion, and automatically regulating the air brake portion, as the main purpose of dynamic braking is to reduce the amount of air braking required. This conserves air, and minimizes the risks of over-heated wheels. One locomotive manufacturer, Electro-Motive Diesel (EMD), estimates that dynamic braking provides between 50% to 70% of the braking force during blended braking.

Self-load test

It is possible to use the brake grids as a form of dynamometer or load bank to perform a "self load" test of locomotive engine horsepower. With the locomotive stationary, the main generator (MG) output is connected to the grids instead of the traction motors. The grids are normally large enough to absorb the full engine output power, which is calculated from MG voltage and current output.

Hydrodynamic braking

Diesel engined locomotives with hydraulic transmission may be equipped for hydrodynamic braking. In this case, the torque converter or fluid coupling acts as a retarder in the same way as a water brake. Braking energy heats the hydraulic fluid, and the heat is dissipated (via a heat exchanger) by the engine cooling radiator. The engine will be idling (and producing little heat) during braking, so the radiator is not overloaded.

See also


External links

Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • dynamic braking — dinaminis stabdymas statusas T sritis automatika atitikmenys: angl. dynamic braking vok. dynamische Bremsung, f rus. динамическое торможение, n pranc. freinage dynamique, m …   Automatikos terminų žodynas

  • dynamic braking — dinaminis stabdymas statusas T sritis fizika atitikmenys: angl. dynamic braking vok. dynamische Bremsung, f rus. динамическое торможение, n pranc. freinage dynamique, m …   Fizikos terminų žodynas

  • dynamic braking — noun : a system of braking (as in electric trains or machinery) in which the driving motor is converted into a generator and is driven by the kinetic energy of the vehicle thus exerting a retarding force * * * Railroads. a braking system used on… …   Useful english dictionary

  • dynamic braking — Railroads. a braking system used on electric and diesel electric locomotives in which the leads of the electric motors can be reversed so that the motors act as generators, offering resistance to the rotating wheel axles and dissipating kinetic… …   Universalium

  • dynamic brake — noun : a brake operating by dynamic braking …   Useful english dictionary

  • Threshold braking — or limit braking is a driving technique most commonly used in motor racing, but also practised in road vehicles to slow a vehicle at the optimum rate using the brakes. This is mostly used in vehicles without an anti lock braking system fitted,… …   Wikipedia

  • Regenerative brake — A regenerative brake is a mechanism that reduces vehicle speed by converting some of its kinetic energy into another useful form of energy. This captured energy is then stored for future use or fed back into a power system for use by other… …   Wikipedia

  • Diesel locomotive — Three styles of diesel locomotive body: cab unit, hood unit and box cab. These locomotives are operated by Pacific National in Australia …   Wikipedia

  • Railway air brake — Piping diagram from 1920 of a Westinghouse E T Air Brake system on a locomotive …   Wikipedia

  • PCC streetcar — Three PCCs on the San Francisco Municipal Railway s F line. An example of one double ended streetcar and two former SEPTA cars …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”