Taxicab geometry

Taxicab geometry
Taxicab geometry versus Euclidean distance: In taxicab geometry all three pictured lines (red, blue, and yellow) have the same length (12) for the same route. In Euclidean geometry, the green line has length 6×√2 ≈ 8.48, and is the unique shortest path.

Taxicab geometry, considered by Hermann Minkowski in the 19th century, is a form of geometry in which the usual distance function or metric of Euclidean geometry is replaced by a new metric in which the distance between two points is the sum of the absolute differences of their coordinates. The taxicab metric is also known as rectilinear distance, L1 distance or \ell1 norm (see Lp space), city block distance, Manhattan distance, or Manhattan length, with corresponding variations in the name of the geometry.[1] The latter names allude to the grid layout of most streets on the island of Manhattan, which causes the shortest path a car could take between two points in the borough to have length equal to the points' distance in taxicab geometry.

Contents

Formal description

The taxicab distance, d1, between two vectors \mathbf{p}, \mathbf{q} in an n-dimensional real vector space with fixed Cartesian coordinate system, is the sum of the lengths of the projections of the line segment between the points onto the coordinate axes. More formally,

d_1(\mathbf{p}, \mathbf{q}) = \|\mathbf{p} - \mathbf{q}\|_1 = \sum_{i=1}^n |p_i-q_i|,

where

\mathbf{p}=(p_1,p_2,\dots,p_n)\text{ and }\mathbf{q}=(q_1,q_2,\dots,q_n)\,

are vectors.

For example, in the plane, the taxicab distance between (p1,p2) and (q1,q2) is | p1q1 | + | p2q2 | .

Taxicab distance depends on the rotation of the coordinate system, but does not depend on its reflection about a coordinate axis or its translation. Taxicab geometry satisfies all of Hilbert's axioms (a formalization of Euclidean geometry) except for the side-angle-side axiom, as one can generate two triangles each with two sides and the angle between them the same, and have them not be congruent.

Circles in discrete and continuous taxicab geometry

A circle is a set of points with a fixed distance, called the radius, from a point called the center. In taxicab geometry, distance is determined by a different metric than in Euclidean geometry, and the shape of circles changes as well. Taxicab circles are squares with sides oriented at a 45° angle to the coordinate axes. The image to the right shows why this is true, by showing in red the set of all points with a fixed distance from a center, shown in blue. As the size of the city blocks diminishes, the points become more numerous and become a rotated square in a continuous taxicab geometry. While each side would have length √2r using a Euclidean metric, where r is the circle's radius, its length in taxicab geometry is 2r. Thus, a circle's circumference is 8r. Thus, the value of a geometric analog to π is 4 in this geometry. The formula for the unit circle in taxicab geometry is | x | + | y | = 1 in Cartesian coordinates and

r = \frac{1}{| \sin \theta| + |\cos\theta|}

in polar coordinates.

A circle of radius r for the Chebyshev distance (L metric) on a plane is also a square with side length 2r parallel to the coordinate axes, so planar Chebyshev distance can be viewed as equivalent by rotation and scaling to planar taxicab distance. However, this equivalence between L1 and L metrics does not generalize to higher dimensions.

The use of Manhattan distance leads to a strange concept: when the resolution of the Taxicab geometry is made larger, approaching infinity (the size of division of the axis approaches 0), it seems intuitive that the Manhattan distance would approach the Euclidean metric

\sqrt{{|x_1 - x_2|}^2 + {|y_1 - y_2|}^2}, \,

but it does not. This is essentially a consequence of being forced to adhere to single-axis movement: when following the Manhattan metric, one cannot move diagonally (in more than one axis simultaneously).

Whenever each pair in a collection of these circles has a nonempty intersection, there exists an intersection point for the whole collection; therefore, the Manhattan distance forms an injective metric space.

A circle of radius 1 (using this distance) is the von Neumann neighborhood of its center.

Measures of distances in chess

In chess, the distance between squares on the chessboard for rooks is measured in Manhattan distance; kings and queens use Chebyshev distance, and bishops use the Manhattan distance (between squares of the same color) on the chessboard rotated 45 degrees, i.e., with its diagonals as coordinate axes. To reach from one square to another, only kings require the number of moves equal to the distance; rooks, queens and bishops require one or two moves (on an empty board, and assuming that the move is possible at all in the bishop's case).

See also

Notes

References

  • Eugene F. Krause (1987). Taxicab Geometry. Dover. ISBN 0-486-25202-7. 

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • taxicab geometry — noun A non Euclidean geometry in which the distance between two points is the sum of the absolute differences between their corresponding coordinates …   Wiktionary

  • Geometria taxicab — Saltar a navegación, búsqueda Distancia Manhattan contra distancia Euclideana: Las lineas rojo, azul y amarillas tienen la misma longitud (12) en las geometrias Euclideana y taxicab. En la geometria Euclideana, la linea verde tiene longitud… …   Wikipedia Español

  • Geometría taxicab — Distancia Manhattan contra distancia Euclideana: Las líneas rojo, azul y amarillas tienen la misma longitud (12) en las geometrías Euclideana y taxicab. En la geometría Euclideana, la línea verde tiene longitud 6×√2 ≈ 8.48, y es el… …   Wikipedia Español

  • Models of non-Euclidean geometry — are mathematical models of geometries in which are non Euclidean in the sense that it is not the case that exactly one line can be drawn parallel to a given line l through a point that is not on l. In hyperbolic geometric models, by contrast,… …   Wikipedia

  • Norm (mathematics) — This article is about linear algebra and analysis. For field theory, see Field norm. For ideals, see Norm of an ideal. For group theory, see Norm (group). For norms in descriptive set theory, see prewellordering. In linear algebra, functional… …   Wikipedia

  • List of mathematics articles (T) — NOTOC T T duality T group T group (mathematics) T integration T norm T norm fuzzy logics T schema T square (fractal) T symmetry T table T theory T.C. Mits T1 space Table of bases Table of Clebsch Gordan coefficients Table of divisors Table of Lie …   Wikipedia

  • Distance — This article is about distance in the mathematical or physical sense. For other senses of the term, see distance (disambiguation). Proximity redirects here. For the 2001 film, see Proximity (film). Distance (or farness) is a numerical description …   Wikipedia

  • Metric (mathematics) — In mathematics, a metric or distance function is a function which defines a distance between elements of a set. A set with a metric is called a metric space. A metric induces a topology on a set but not all topologies can be generated by a metric …   Wikipedia

  • Unit disk — For other uses, see Disc (disambiguation). An open Euclidean unit disk In mathematics, the open unit disk (or disc) around P (where P is a given point in the plane), is the set of points whose distance from P is less than 1 …   Wikipedia

  • Hypotenuse — A hypotenuse is the longest side of a right triangle, the side opposite of the right angle. The length of the hypotenuse of a right triangle can be found using the Pythagorean theorem, which states that the square of the length of the hypotenuse… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”