Models of nonEuclidean geometry
 Models of nonEuclidean geometry

Models of nonEuclidean geometry are mathematical models of geometries in which are nonEuclidean in the sense that it is not the case that exactly one line can be drawn parallel to a given line l through a point that is not on l. In hyperbolic geometric models, by contrast, there are infinitely many lines through A parallel to l, and in elliptic geometric models, parallel lines do not exist. (See the entries on hyperbolic geometry and elliptic geometry for more information.)
Euclidean geometry is modelled by our notion of a "flat plane." The simplest model for elliptic geometry is a sphere, where lines are "great circles" (such as the equator or the meridians on a globe), and points opposite each other are identified (considered to be the same). The pseudosphere has the appropriate curvature to model hyperbolic geometry.
See also
References
External links
Wikimedia Foundation.
2010.
Look at other dictionaries:
NonEuclidean geometry — Behavior of lines with a common perpendicular in each of the three types of geometry Non Euclidean geometry is the term used to refer to two specific geometries which are, loosely speaking, obtained by negating the Euclidean parallel postulate,… … Wikipedia
nonEuclidean geometry — geometry based upon one or more postulates that differ from those of Euclid, esp. from the postulate that only one line may be drawn through a given point parallel to a given line. [1870 75; NON + EUCLIDEAN] * * * Any theory of the nature of… … Universalium
Euclidean geometry — A Greek mathematician performing a geometric construction with a compass, from The School of Athens by Raphael. Euclidean geometry is a mathematical system attributed to the Alexandrian Greek mathematician Euclid, which he described in his… … Wikipedia
Geometry — (Greek γεωμετρία ; geo = earth, metria = measure) is a part of mathematics concerned with questions of size, shape, and relative position of figures and with properties of space. Geometry is one of the oldest sciences. Initially a body of… … Wikipedia
geometry — /jee om i tree/, n. 1. the branch of mathematics that deals with the deduction of the properties, measurement, and relationships of points, lines, angles, and figures in space from their defining conditions by means of certain assumed properties… … Universalium
Nonconvexity (economics) — In economics, non convexity refers to violations of the convexity assumptions of elementary economics. Basic economics textbooks concentrate on consumers with convex preferences (that do not prefer extremes to in between values) and convex budget … Wikipedia
Nonstandard analysis — Abraham Robinson Gottfried Wilhelm Leibniz argued tha … Wikipedia
Hyperbolic geometry — Lines through a given point P and asymptotic to line R. A triangle immersed in a saddle shape plane (a hyperbolic paraboloid), as well as two diverging ultraparall … Wikipedia
Differential geometry of surfaces — Carl Friedrich Gauss in 1828 In mathematics, the differential geometry of surfaces deals with smooth surfaces with various additional structures, most often, a Riemannian metric. Surfaces have been extensively studied from various perspectives:… … Wikipedia
Projective geometry — is a non metrical form of geometry, notable for its principle of duality. Projective geometry grew out of the principles of perspective art established during the Renaissance period, and was first systematically developed by Desargues in the 17th … Wikipedia