Clausen function

Clausen function

In mathematics, the Clausen function is defined by the following integral:

\operatorname{Cl}_2(\theta) = - \int_0^\theta \log|2 \sin(t/2)| \,dt.

It was introduced by Thomas Clausen (1832).

The Lobachevsky function Λ or Л is essentially the same function with a change of variable:

\Lambda(\theta) = - \int_0^\theta \log|2 \sin(t)| \,dt = \operatorname{Cl}_2(2\theta)/2.

though the name "Lobachevsky function" is not quite historically accurate, as Lobachevsky's formulas for hyperbolic volume used the slightly different function

\int_0^\theta \log| \sec(t)| \,dt = \Lambda(\theta+\pi/2)+\theta\log 2

Contents

General definition

More generally, one defines

\operatorname{Cl}_s(\theta) = \sum_{n=1}^\infty \frac{\sin(n\theta)}{n^s}

which is valid for complex s with Re s >1. The definition may be extended to all of the complex plane through analytic continuation.

Relation to polylogarithm

It is related to the polylogarithm by

\operatorname{Cl}_s(\theta)
= \Im (\operatorname{Li}_s(e^{i \theta})).

Kummer's relation

Ernst Kummer and Rogers give the relation

\operatorname{Li}_2(e^{i \theta}) = \zeta(2) - \theta(2\pi-\theta)/4 + i\operatorname{Cl}_2(\theta)

valid for 0\leq \theta \leq 2\pi.

Relation to Dirichlet L-functions

For rational values of θ / π (that is, for θ / π = p / q for some integers p and q), the function sin(nθ) can be understood to represent a periodic orbit of an element in the cyclic group, and thus \operatorname{Cl}_s(\theta) can be expressed as a simple sum involving the Hurwitz zeta function. This allows relations between certain Dirichlet L-functions to be easily computed.

Series acceleration

A series acceleration for the Clausen function is given by

\frac{\operatorname{Cl}_2(\theta)}{\theta} = 
1-\log|\theta| - 
\sum_{n=1}^\infty \frac{\zeta(2n)}{n(2n+1)} \left(\frac{\theta}{2\pi}\right)^n

which holds for | θ | < 2π. Here, ζ(s) is the Riemann zeta function. A more rapidly convergent form is given by

\frac{\operatorname{Cl}_2(\theta)}{\theta} = 
3-\log\left[|\theta| \left(1-\frac{\theta^2}{4\pi^2}\right)\right]
-\frac{2\pi}{\theta} \log \left( \frac{2\pi+\theta}{2\pi-\theta}\right) 
+\sum_{n=1}^\infty \frac{\zeta(2n)-1}{n(2n+1)} \left(\frac{\theta}{2\pi}\right)^n

Convergence is aided by the fact that ζ(n) − 1 approaches zero rapidly for large values of n. Both forms are obtainable through the types of resummation techniques used to obtain rational zeta series. (ref. Borwein, etal. 2000, below).

Special values

Some special values include

\operatorname{Cl}_2\left(\frac{\pi}{2}\right)=G

where G is Catalan's constant.

References


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Clausen — [ˈklauˀsən] is a Danish patronymic surname, literally meaning son of Claus, Claus being a German form of the Greek Νικόλαος, Nikolaos, (cf. Nicholas), used in Denmark at least since the 16th century[1]. The spelling variant Klausen has identical… …   Wikipedia

  • Clausen-Funktion — In der Mathematik ist die Clausen Funktion durch das folgende Integral definiert: Inhaltsverzeichnis 1 Allgemeine Definition 2 Beziehung zum Polylogarithmus …   Deutsch Wikipedia

  • Riemann zeta function — ζ(s) in the complex plane. The color of a point s encodes the value of ζ(s): dark colors denote values close to zero and hue encodes the value s argument. The white spot at s = 1 is the pole of the zeta function; the black spots on the… …   Wikipedia

  • Fonction De Clausen — En mathématiques, la fonction de Clausen est définie par l intégrale suivante : Plus généralement, on définit . Elle est reliée au polylogarithme par . Ernst Kummer e …   Wikipédia en Français

  • Fonction de clausen — En mathématiques, la fonction de Clausen est définie par l intégrale suivante : Plus généralement, on définit . Elle est reliée au polylogarithme par . Ernst Kummer e …   Wikipédia en Français

  • Spence's function — Li2 redirects here. For the molecule with formula Li2, see dilithium. See also: polylogarithm#Dilogarithm In mathematics, Spence s function, or dilogarithm, denoted as Li2(z), is a particular case of the polylogarithm. Lobachevsky s function and… …   Wikipedia

  • Fonction de Clausen — En mathématiques, la fonction de Clausen est définie par l intégrale suivante : Plus généralement, on définit . Elle est reliée au polylogarithme par . Ernst Kummer et Rogers donnent la relation …   Wikipédia en Français

  • List of mathematics articles (C) — NOTOC C C closed subgroup C minimal theory C normal subgroup C number C semiring C space C symmetry C* algebra C0 semigroup CA group Cabal (set theory) Cabibbo Kobayashi Maskawa matrix Cabinet projection Cable knot Cabri Geometry Cabtaxi number… …   Wikipedia

  • Trigamma-Funktion — Die Trigammafunktion ψ1(z) in der komplexen Zahlenebene. In der Mathematik ist die Trigamma Funktion die zweite Polygammafunktion[1]; die erste Polygammafunktion ist die Digammafunktion ψ. Die Trigammafunkti …   Deutsch Wikipedia

  • Trigammafunktion — Die Trigammafunktion ψ1(z) in der komplexen Zahlenebene. In der Mathematik ist die Trigamma Funktion die zweite Polygammafunktion[1]; die erste Polygammafunktion ist die Digammafunktion ψ. Die Trigammafunktion ist damit eine …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”