Catalan's constant

Catalan's constant

In mathematics, Catalan's constant "G", which occasionally appears in estimates in combinatorics, is defined by

:G = eta(2) = sum_{n=0}^{infty} frac{(-1)^{n{(2n+1)^2} = frac{1}{1^2} - frac{1}{3^2} + frac{1}{5^2} - frac{1}{7^2} + cdots

where β is the Dirichlet beta function. Its numerical value [http://www.gutenberg.org/etext/812] is approximately

:"G" = 0.915 965 594 177 219 015 054 603 514 932 384 110 774 …

It is not known whether "G" is rational or irrational.

Catalan's constant was named after Eugène Charles Catalan.

Integral identities

Some identities include

:G = -int_{0}^{1} frac{ln(t)}{1 + t^2} dt

:G = int_0^1 int_0^1 frac{1}{1+x^2 y^2} dx dy

:G = int_{0}^{pi/4} frac{t}{sin(t) cos(t)} dt

along with

: G = frac12int_0^1 mathrm{K}(x),dx

where K("x") is a complete elliptic integral of the first kind, and

: G = int_0^1 frac{arctan x}{x}dx.

Uses

"G" appears in combinatorics, as well as in values of the second polygamma function, also called the trigamma function, at fractional arguments:

: psi_{1}left(frac{1}{4} ight) = pi^2 + 8G

: psi_{1}left(frac{3}{4} ight) = pi^2 - 8G

Simon Plouffe gives an infinite collection of identities between the trigamma function, pi^2 and Catalan's constant; these are expressible as paths on a graph.

It also appears in connection with the hyperbolic secant distribution.

Quickly converging series

The following two formulas involve quickly converging series, and are thus appropriate for numerical computation::

and

:G = frac{pi}{8} log(sqrt{3} + 2) + frac38 sum_{n=0}^infty frac{(n!)^2}{(2n)!(2n+1)^2}.

The theoretical foundations for such series is given by Broadhurst. [D.J. Broadhurst, " [http://arxiv.org/abs/math.CA/9803067 Polylogarithmic ladders, hypergeometric series and the ten millionth digits of ζ(3) and ζ(5)] ", (1998) "arXiv" math.CA/9803067]

Known digits

The number of known digits of Catalan's constant "G" has increased dramatically during the last decades. This is due both to the increase of performance of computers as well as to algorithmic improvements. [Gourdon, X., Sebah, P; [http://numbers.computation.free.fr/Constants/constants.html Constants and Records of Computation] ]

ee also

* Zeta constant

References

* Victor Adamchik, " [http://www-2.cs.cmu.edu/~adamchik/articles/catalan/catalan.htm 33 representations for Catalan's constant] " (undated)
* Victor Adamchik, " [http://www-2.cs.cmu.edu/~adamchik/articles/csum.html A certain series associated with Catalan's constant] ", (2002) Zeitschrift fuer Analysis und ihre Anwendungen (ZAA), 21, pp.1-10.
* Simon Plouffe, " [http://www.lacim.uqam.ca/~plouffe/IntegerRelations/identities3a.html A few identities (III) with Catalan] ", (1993) "(Provides over one hundred different identities)".
* Simon Plouffe, " [http://www.lacim.uqam.ca/~plouffe/IntegerRelations/identities3.html A few identities with Catalan constant and Pi^2] ", (1999) "(Provides a graphical interpretation of the relations)"
*
* [http://functions.wolfram.com/Constants/Catalan/06/01/ Catalan constant: Generalized power series] at the Wolfram Functions Site
* Greg Fee, " [http://www.gutenberg.org/etext/682 Catalan's Constant (Ramanujan's Formula)] " (1996) "(Provides the first 300,000 digits of Catalan's constant.)".


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Catalan — can refer to:* Catalan people * Catalan language * Catalan wine * An inhabitant of Catalonia * Catalan Ornithological Institute * Eugène Charles Catalan, a mathematician * Catalan solid, a concept in mathematics * Catalan number, a concept in… …   Wikipedia

  • Catalan's conjecture — (occasionally now referred to as Mihăilescu s theorem) is a theorem in number theory that was conjectured by the mathematician Eugène Charles Catalan in 1844 and proven in 2002 by Preda Mihăilescu. 23 and 32 are two powers of natural numbers,… …   Wikipedia

  • Catalan solid — In mathematics, a Catalan solid, or Archimedean dual, is a dual polyhedron to an Archimedean solid. The Catalan solids are named for the Belgian mathematician, Eugène Catalan who first described them in 1865.The Catalan solids are all convex.… …   Wikipedia

  • Constante de Catalan — En mathématiques, la constante de Catalan, nommée d après le mathématicien Eugène Charles Catalan, est le nombre défini par : [1] où β est la fonction beta de Dirichlet. On ne sait pas si la constante K est rationnelle ou irrationnelle mais… …   Wikipédia en Français

  • Mathematical constant — A mathematical constant is a special number, usually a real number, that is significantly interesting in some way .[1] Constants arise in many different areas of mathematics, with constants such as e and π occurring in such diverse contexts as… …   Wikipedia

  • Eugène Charles Catalan — (May 30,1814 ndash; February 14, 1894) was a Belgian mathematician. Biography Catalan was born in Bruges, Belgium, the only child of a French jeweller by the name of Joseph Catalan, in 1814. In 1825, he traveled to Paris and learned mathematics… …   Wikipedia

  • Holonomic constant — A holonomic constant is a limiting value of a holonomic function near a singular point. Holonomic constants include Apéry s constant, Catalan s constant, Pólya s random walk constants for d > 2, and pi.References …   Wikipedia

  • Euler–Mascheroni constant — Euler s constant redirects here. For the base of the natural logarithm, e ≈ 2.718..., see e (mathematical constant). The area of the blue region is equal to the Euler–Mascheroni constant. List of numbers – Irrational and suspected irrational… …   Wikipedia

  • Pays Terres romanes en Pays catalan — Terres Romanes en Pays Catalan Informations Région Languedoc Roussillon Département Pyrénées Orientales Communautés de communes …   Wikipédia en Français

  • Постоянная Каталана — G (англ. Catalan s constant) встречается в различных приложениях математики в частности, в комбинаторике. Её также обозначают буквами K или C. Она может быть определена как сумма бесконечного знакопеременного ряда Её численное значение… …   Википедия

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”