Hurwitz zeta function

Hurwitz zeta function

In mathematics, the Hurwitz zeta function, named after Adolf Hurwitz, is one of the many zeta functions. It is formally defined for complex arguments "s" with Re("s")>1 and "q" with Re("q")>0 by

:zeta(s,q) = sum_{n=0}^infty frac{1}{(q+n)^{s

This series is absolutely convergent for the given values of "s" and "q" and can be extended to a meromorphic function defined for all "s"≠1. The Riemann zeta function is ζ("s",1).

Analytic continuation

The Hurwitz zeta function can be extended by analytic continuation to a meromorphic function defined for all complex numbers "s" with "s" ≠ 1. At "s" = 1 it has a simple pole with residue 1. The constant term is given by

:lim_{s o 1} left [ zeta (s,q) - frac{1}{s-1} ight] = frac{-Gamma'(q)}{Gamma(q)} = -psi(q)

where Γ is the Gamma function and ψ is the digamma function.

eries representation

A convergent series representation defined for "q" > −1 and any complex "s" ≠ 1 was given by Helmut Hasse in 1930 [Helmut Hasse, "Ein Summierungsverfahren fur die Riemannsche ζ-Reihe", (1930) Math. Z. 32 pp 458-464.] :

:zeta(s,q)=frac{1}{s-1} sum_{n=0}^infty frac{1}{n+1}sum_{k=0}^n (-1)^k {n choose k} (q+k)^{1-s}.

This series converges uniformly on compact subsets of the "s"-plane to an entire function. The inner sum may be understood to be the "n"th forward difference of q^{1-s}; that is,

:Delta^n q^{1-s} = sum_{k=0}^n (-1)^{n-k} {n choose k} (q+k)^{1-s}

where Δ is the forward difference operator. Thus, one may write

:zeta(s,q)=frac{1}{s-1} sum_{n=0}^infty frac{(-1)^n}{n+1} Delta^n q^{1-s}

:::= frac{1}{s-1} {log(1 + Delta) over Delta} q^{1-s}.

Integral representation

The function has an integral representation in terms of the Mellin transform as

:zeta(s,q)=frac{1}{Gamma(s)} int_0^infty frac{t^{s-1}e^{-qt{1-e^{-tdt

for Re s>1 and Re q >0.

Hurwitz's formula

Hurwitz's formula is the theorem that :zeta(1-s,x)=frac{1}{2s}left [e^{-ipi s/2}eta(x;s) + e^{ipi s/2} eta(1-x;s) ight] where :eta(x;s)=2Gamma(s+1)sum_{n=1}^infty frac {exp(2pi inx) } {(2pi n)^s}=frac{2Gamma(s+1)}{(2pi)^s} mbox{Li}_s (e^{2pi ix}) is a representation of the zeta that is valid for 0le xle 1 and s>1. Here, mbox{Li}_s (z) is the polylogarithm.

Functional equation

The functional equation relates values of the zeta on the left- and right-hand sides of the complex plane. For integers 1leq m leq n , :zeta left(1-s,frac{m}{n} ight) = frac{2Gamma(s)}{ (2pi n)^s } sum_{k=1}^n cos left( frac {pi s} {2} -frac {2pi k m} {n} ight);zeta left( s,frac {k}{n} ight)holds for all values of "s".

Taylor series

The derivative of the zeta in the second argument is a shift:

:frac {partial} {partial q} zeta (s,q) = -szeta(s+1,q).

Thus, the Taylor series has the distinctly umbral form:

:zeta(s,x+y) = sum_{k=0}^infty frac {y^k} {k!} frac {partial^k} {partial x^k} zeta (s,x) =sum_{k=0}^infty {s+k-1 choose s-1} (-y)^k zeta (s+k,x).

Closely related is the Stark-Keiper formula:

:zeta(s,N) = sum_{k=0}^infty left [ N+frac {s-1}{k+1} ight] {s+k-1 choose s-1} (-1)^k zeta (s+k,N)

which holds for integer "N" and arbitrary "s". See also Faulhaber's formula for a similar relation on finite sums of powers of integers.

Fourier transform

The discrete Fourier transform of the Hurwitz zeta function with respect to the order "s" is the Legendre chi function.

Relation to Bernoulli polynomials

The function eta defined above generalizes the Bernoulli polynomials::B_n(x) = -Re left [ (-i)^n eta(x;n) ight] where Re z denotes the real part of "z". Alternately,:zeta(-n,x)=-{B_{n+1}(x) over n+1}.

In particular, the relation holds for n=0 and one has

:zeta(0,x)= frac{1}{2} -x

Relation to Jacobi theta function

If vartheta (z, au) is the Jacobi theta function, then

:int_0^infty left [vartheta (z,it) -1 ight] t^{s/2} frac{dt}{t}= pi^{-(1-s)/2} Gamma left( frac {1-s}{2} ight) left [ zeta(1-s,z) + zeta(1-s,1-z) ight]

holds for Re s > 0 and "z" complex, but not an integer. For "z"="n" an integer, this simplifies to

:int_0^infty left [vartheta (n,it) -1 ight] t^{s/2} frac{dt}{t}= 2 pi^{-(1-s)/2} Gamma left( frac {1-s}{2} ight) zeta(1-s)=2 pi^{-s/2} Gamma left( frac {s}{2} ight) zeta(s).

where ζ here is the Riemann zeta function. Note that this latter form is the functional equation for the Riemann zeta function, as originally given by Riemann. The distinction based on "z" being an integer or not accounts for the fact that the Jacobi theta function converges to the Dirac delta function in "z" as t ightarrow 0.

Relation to Dirichlet "L"-functions

At rational arguments the Hurwitz zeta function may be expressed as a linear combination of Dirichlet L-functions and vice versa: The Hurwitz zeta function coincides with Riemann's zeta function &zeta;("s") when "q"=1, when "q"=1/2 it is equal to (2"s"-1)&zeta;("s"), and if "q"="n"/"k" with "k">2, ("n","k")>1 and 0<"n"<"k", then

:zeta(s,n/k)=sum_chioverline{chi}(n)L(s,chi),

the sum running over all Dirichlet characters mod "k". In the opposite direction we have the linear combination

:L(s,chi)=frac {1}{k^s} sum_{n=1}^k chi(n); zeta left(s,frac{n}{k} ight).

There is also the multiplication theorem

:k^szeta(s)=sum_{n=1}^k zetaleft(s,frac{n}{k} ight),

of which a useful generalization is

:sum_{p=0}^{q-1}zeta(s,a+p/q)=q^s,zeta(s,qa).

(This last form is valid whenever "q" a natural number and 1-"qa" is not.)

Zeros

If "q"=1 the Hurwitz zeta function reduces to the Riemann zeta function itself; if "q"=1/2 it reduces to the Riemann zeta function multiplied by a simple function of the complex argument "s" ("vide supra"), leading in each case to the difficult study of the zeros of Riemann's zeta function. In particular, there will be no zeros with real part greater than or equal to 1. However, if 0<"q"<1 and "q"&ne;1/2, then there are zeros of Hurwitz's zeta function in the strip 1Davenport and Heilbronn [Davenport, H. and Heilbronn, H. "On the zeros of certain Dirichlet series" J. London Math. Soc. 11 (1936), pp. 181-185] for rational and non-algebraic irrational "q" and by Cassels [Cassels, J. W. S. "Footnote to a note of Davenport and Heilbronn" J. London Math. Soc. 36 (1961), pp. 177-184] for algebraic irrational "q".

Rational values

The Hurwitz zeta function occurs in a number of striking identities at rational values (given by Djurdje Cvijović and Jacek Klinowski, reference below). In particular, values in terms of the Euler polynomials E_n(x):

:E_{2n-1}left(frac{p}{q} ight) = (-1)^n frac{4(2n-1)!}{(2pi q)^{2nsum_{k=1}^q zetaleft(2n,frac{2k-1}{2q} ight)cos frac{(2k-1)pi p}{q}

and

:E_{2n}left(frac{p}{q} ight) = (-1)^n frac{4(2n)!}{(2pi q)^{2n+1sum_{k=1}^q zetaleft(2n+1,frac{2k-1}{2q} ight)sin frac{(2k-1)pi p}{q}

One also has

:zetaleft(s,frac{2p-1}{2q} ight) = 2(2q)^{s-1} sum_{k=1}^q left [C_sleft(frac{k}{q} ight) cos left(frac{(2p-1)pi k}{q} ight) +S_sleft(frac{k}{q} ight) sin left(frac{(2p-1)pi k}{q} ight) ight]

which holds for 1le p le q. Here, the C_ u(x) and S_ u(x) are defined by means of the Legendre chi function chi_ u as

:C_ u(x) = operatorname{Re}, chi_ u (e^{ix})

and

:S_ u(x) = operatorname{Im}, chi_ u (e^{ix}).

For integer values of ν, these may be expressed in terms of the Euler polynomials. These relations may be derived by employing the functional equation together with Hurwitz's formula, given above.

Applications

Hurwitz's zeta function occurs in a variety of disciplines. Most commonly, it occurs in number theory, where its theory is the deepest and most developed. However, it also occurs in the study of fractals and dynamical systems. In applied statistics, it occurs in Zipf's law and the Zipf-Mandelbrot law. In particle physics, it occurs in a formula by Julian Schwinger [ Schwinger, J., "On gauge invariance and vacuum polarization", Phys. Rev. 82 (1951), pp. 664-679.] , giving an exact result for the pair production rate of a Dirac electron in a uniform electric field.

pecial cases and generalizations

The Hurwitz zeta function generalizes the polygamma function::psi^{(m)}(z)= (-1)^{m+1} m! zeta (m+1,z).The Lerch transcendent generalizes the Hurwitz zeta::Phi(z, s, q) = sum_{k=0}^infty frac { z^k} {(k+q)^s}and thus:zeta (s,q)=Phi(1, s, q).,

References

*
* See chapter 12 of Apostol IANT
* Milton Abramowitz and Irene A. Stegun, "Handbook of Mathematical Functions", (1964) Dover Publications, New York. ISBN 0-486-61272-4. "(See [http://www.math.sfu.ca/~cbm/aands/page_260.htm Paragraph 6.4.10] for relationship to polygamma function.)"
* Djurdje Cvijović and Jacek Klinowski, " [http://www.ams.org/journal-getitem?pii=S0025-5718-99-01091-1 Values of the Legendre chi and Hurwitz zeta functions at rational arguments] ", Mathematics of Computation 68 (1999), 1623-1630.
* Victor S. Adamchik, " [http://www-2.cs.cmu.edu/~adamchik/articles/hurwitz.htm Derivatives of the Hurwitz Zeta Function for Rational Arguments] ", Journal of Computational and Applied Mathematics, 100 (1998), pp 201--206.
* Linas Vepstas, [http://www.linas.org/math/chap-gkw/gkw.html The Bernoulli Operator, the Gauss-Kuzmin-Wirsing Operator, and the Riemann Zeta]


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Zeta function — A zeta function is a function which is composed of an infinite sum of powers, that is, which may be written as a Dirichlet series::zeta(s) = sum {k=1}^{infty}f(k)^s Examples There are a number of mathematical functions with the name zeta function …   Wikipedia

  • Riemann zeta function — ζ(s) in the complex plane. The color of a point s encodes the value of ζ(s): dark colors denote values close to zero and hue encodes the value s argument. The white spot at s = 1 is the pole of the zeta function; the black spots on the… …   Wikipedia

  • Lerch zeta function — In mathematics, the Lerch zeta function, sometimes called the Hurwitz Lerch zeta function, is a special function that generalizes the Hurwitz zeta function and the polylogarithm. It is named after Mathias Lerch [http://www groups.dcs.st… …   Wikipedia

  • Hurwitz — is a surname and may refer to:*Aaron Hurwitz, musician, see Live on Breeze Hill *Adolf Hurwitz (1859 1919), German mathematician **Hurwitz polynomial **Hurwitz matrix **Hurwitz quaternion **Hurwitz s automorphisms theorem **Hurwitz zeta function… …   Wikipedia

  • Hurwitzsche Zeta-Funktion — Die Hurwitzsche Zeta Funktion (nach Adolf Hurwitz) ist eine der vielen bekannten Zeta Funktionen, die in der analytischen Zahlentheorie, einem Teilgebiet der Mathematik, eine wichtige Rolle spielt. Die formale Definition für komplexe s,q lautet… …   Deutsch Wikipedia

  • Rational zeta series — In mathematics, a rational zeta series is the representation of an arbitrary real number in terms of a series consisting of rational numbers and the Riemann zeta function or the Hurwitz zeta function. Specifically, given a real number x , the… …   Wikipedia

  • Dirichlet L-function — In mathematics, a Dirichlet L series is a function of the form Here χ is a Dirichlet character and s a complex variable with real part greater than 1. By analytic continuation, this function can be extended to a meromorphic function on the whole… …   Wikipedia

  • Función zeta de Hurwitz — En matemáticas, la función zeta de Hurwitz es una de las muchas funciones zetas. Se la define formalmente para un argumento complejo s y un argumento real q como Esta sucesión es convergente para q > 0 y Re(s) > 1. Si q… …   Wikipedia Español

  • Polygamma function — In mathematics, the polygamma function of order m is defined as the ( m + 1)th derivative of the logarithm of the gamma function::psi^{(m)}(z) = left(frac{d}{dz} ight)^m psi(z) = left(frac{d}{dz} ight)^{m+1} lnGamma(z).Here :psi(z) =psi^{(0)}(z) …   Wikipedia

  • Función zeta de Riemann — ζ(s) en el plano complejo. El color de un punto s codifica el valor de ζ(s): Colores fuertes denotan valores cercanos a 0 y el tono codifica el valor del argumento. El punto blanco en s=1 es el polo de la función zeta; los puntos negros en el eje …   Wikipedia Español

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”