Lerch zeta function

Lerch zeta function

In mathematics, the Lerch zeta-function, sometimes called the Hurwitz-Lerch zeta-function, is a special function that generalizes the Hurwitz zeta-function and the polylogarithm. It is named after Mathias Lerch [http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Lerch.html] .

Definition

The Lerch zeta-function is given by

:L(lambda, alpha, s) = sum_{n=0}^inftyfrac { exp (2pi ilambda n)} {(n+alpha)^s}.

A related function, the Lerch transcendent, is given by

:Phi(z, s, alpha) = sum_{n=0}^inftyfrac { z^n} {(n+alpha)^s}.

The two are related, as

:,Phi(exp (2pi ilambda), s,alpha)=L(lambda, alpha,s).

Integral representations

An integral representation is given by

:Phi(z,s,a)=frac{1}{Gamma(s)}int_{0}^{infty}frac{t^{s-1}e^{-at{1-ze^{-t,dt

for

:Re(a)>0wedgeRe(s)>0wedge z<1veeRe(a)>0wedgeRe(s)>1wedge z=1.

A contour integral representation is given by

:Phi(z,s,a)=-frac{Gamma(1-s)}{2pi i}int_{0}^{(+infty)}frac{(-t)^{s-1}e^{-at{1-ze^{-t,dt

for

:Re(a)>0wedgeRe(s)<0wedge z<1

where the contour must not enclose any of the points t=log(z)+2kpi i,kin Z.

A Hermite-like integral representation is given by

:Phi(z,s,a)=frac{1}{2a^s}+int_{0}^{infty}frac{z^{t{(a+t)^{s,dt+frac{2}{a^{s-1int_{0}^{infty}frac{sin(sarctan(t)-talog(z))}{(1+t^2)^{s/2}(e^{2pi at}-1)},dt

for

:Re(a)>0wedge |z|<1

and

:Phi(z,s,a)=frac{1}{2a^s}+frac{log^{s-1}(1/z)}{z^a}Gamma(1-s,alog(1/z))+frac{2}{a^{s-1int_{0}^{infty}frac{sin(sarctan(t)-talog(z))}{(1+t^2)^{s/2}(e^{2pi at}-1)},dt

for :Re(a)>0.

pecial cases

The Hurwitz zeta-function is a special case, given by:,zeta(s,alpha)=L(0, alpha,s)=Phi(1,s,alpha).

The polylogarithm is a special case of the Lerch Zeta, given by :, extrm{Li}_s(z)=zPhi(z,s,1).

The Legendre chi function is a special case, given by:,chi_n(z)=2^{-n}z Phi (z^2,n,1/2).

The Riemann zeta-function is given by:,zeta(s)=Phi (1,s,1).

The Dirichlet eta-function is given by:,eta(s)=Phi (-1,s,1).

Identities

For &lambda; rational, the summand is a root of unity, and thus L(lambda, alpha, s) may be expressed as a finite sum over the Hurwitz zeta-function.

Various identities include::Phi(z,s,a)=z^n Phi(z,s,a+n) + sum_{k=0}^{n-1} frac {z^k}{(k+a)^s}

and

:Phi(z,s-1,a)=left(a+zfrac{partial}{partial z} ight) Phi(z,s,a)

and

:Phi(z,s+1,a)=-,frac{1}{s}frac{partial}{partial a} Phi(z,s,a).

eries representations

A series representation for the Lerch transcendent is given by

:Phi(z,s,q)=frac{1}{1-z} sum_{n=0}^infty left(frac{-z}{1-z} ight)^nsum_{k=0}^n (-1)^k {n choose k} (q+k)^{-s}.

The series is valid for all "s", and for complex "z" with Re("z")&lt;1/2. Note a general resemblance to a similar series representation for the Hurwitz zeta function.

A Taylor's series in the first parameter was given by Erdélyi. It may be written as the following series, which is valid for :|log(z)|<2 pi;s eq 1,2,3,dots; a eq 0,-1,-2,dots:Phi(z,s,a)=z^{-a}left [Gamma(1-s)left(-log (z) ight)^{s-1}+sum_{k=0}^{infty}zeta(s-k,a)frac{log^{k}(z)}{k!} ight]

:"(the correctness of this formula is disputed, please see the )"Please see:B. R. Johnson,Generalized Lerch zeta-function.Pacific J. Math. 53, no. 1 (1974), 189–193."http://projecteuclid.org/Dienst/UI/1.0/Display/euclid.pjm/1102911791?abstract= "

If s is a positive integer, then:Phi(z,n,a)=z^{-a}left{sum_k=0}atop k eq n-1}^{infty}zeta(n-k,a)frac{log^{k}(z)}{k!}+left [Psi(n)-Psi(a)-log(-log(z)) ight] frac{log^{n-1}(z)}{(n-1)!} ight}.

A Taylor series in the third variable is given by:Phi(z,s,a+x)=sum_{k=0}^{infty}Phi(z,s+k,a)(s)_{k}frac{(-x)^k}{k!};|x|

Series at "a" = -"n" is given by:Phi(z,s,a)=sum_{k=0}^{n}frac{z^k}{(a+k)^s}+z^nsum_{m=0}^{infty}(1-m-s)_{m}Li_{s+m}(z)frac{(a+n)^m}{m!}; a ightarrow-n A special case for "n" = 0 has the following series:Phi(z,s,a)=frac{1}{a^s}+sum_{m=0}^{infty}(1-m-s)_{m}Li_{s+m}(z)frac{a^{m{m!}; |a|<1.

An asymptotic series for s ightarrow-infty:Phi(z,s,a)=z^{-a}Gamma(1-s)sum_{k=-infty}^{infty} [2kpi i-log(z)] ^{s-1}e^{2kpi ai}for |a|<1;Re(s)<0 ;z otin (-infty,0) and:Phi(-z,s,a)=z^{-a}Gamma(1-s)sum_{k=-infty}^{infty} [(2k+1)pi i-log(z)] ^{s-1}e^{(2k+1)pi ai}for |a|<1;Re(s)<0 ;z otin (0,infty).

An asymptotic series in the incomplete Gamma function:Phi(z,s,a)=frac{1}{2a^s}+frac{1}{z^a}sum_{k=1}^{infty}frac{e^{-2pi i(k-1)a}Gamma(1-s,a(-2pi i(k-1)-log(z)))} {(-2pi i(k-1)-log(z))^{1-s+frac{e^{2pi ika}Gamma(1-s,a(2pi ik-log(z)))}{(2pi ik-log(z))^{1-sfor |a|<1;Re(s)<0.

References

* Mathias Lerch, "Démonstration élémentaire de la formule: frac{pi^2}{sin^2{pi x=sum_{ u=-infty}^{infty}frac{1}{(x+ u)^2}", (1903), L'Enseignement Mathématique, 5, pp.450-453.
* M. Jackson, "On Lerch's transcendent and the basic bilateral hypergeometric series ,_2psi_2", (1950) J. London Math. Soc., 25, pp. 189-196
* H. Bateman, "Higher Transcendental Functions", (1953) McGraw-Hill, New York.
* A. Erdélyi, "Higher Transcendental Functions", (1953) McGraw-Hill, New York.
* Ramunas Garunkstis, " [http://www.mif.vu.lt/~garunkstis Home Page] " (2005) "(Provides numerous references and preprints.)"
* Jesus Guillera and Jonathan Sondow, " [http://arxiv.org/abs/math.NT/0506319 Double integrals and infinite products for some classical constants via analytic continuations of Lerch's transcendent] " (2005) "(Includes various basic identities in the introduction.)"
* Ramunas Garunkstis, " [http://www.mif.vu.lt/~garunkstis/preprintai/approx.pdf Approximation of the Lerch Zeta Function] " (PDF)
* Sergej V. Aksenov and Ulrich D. Jentschura, " [http://aksenov.freeshell.org/lerchphi.html C and Mathematica Programs for Calculation of Lerch's Transcendent] " (2002)

* S. Kanemitsu, Y. Tanigawa and H. Tsukada, " [http://www.iisc.ernet.in/nias/HRJ/vol27/Ktt.pdf A generalization of Bochner's formula] ", (undated, 2005 or earlier)

* A. Laurinv cikas,R. Garunkv stis, "The Lerch zeta-function.", Kluwer Academic Publishers, Dordrecht, 2002. viii+189 pp.


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Zeta function universality — In mathematics, the universality of zeta functions is the remarkable property of the Riemann zeta function and other, similar, functions, such as the Dirichlet L functions, to approximate arbitrary non vanishing holomorphic functions arbitrarily… …   Wikipedia

  • Zeta function — A zeta function is a function which is composed of an infinite sum of powers, that is, which may be written as a Dirichlet series::zeta(s) = sum {k=1}^{infty}f(k)^s Examples There are a number of mathematical functions with the name zeta function …   Wikipedia

  • Riemann zeta function — ζ(s) in the complex plane. The color of a point s encodes the value of ζ(s): dark colors denote values close to zero and hue encodes the value s argument. The white spot at s = 1 is the pole of the zeta function; the black spots on the… …   Wikipedia

  • Hurwitz zeta function — In mathematics, the Hurwitz zeta function, named after Adolf Hurwitz, is one of the many zeta functions. It is formally defined for complex arguments s with Re( s )>1 and q with Re( q )>0 by:zeta(s,q) = sum {n=0}^infty frac{1}{(q+n)^{sThis series …   Wikipedia

  • Lerchsche Zeta-Funktion — Die Lerchsche Zeta Funktion (nach Mathias Lerch) ist eine sehr allgemeine Zeta Funktion. Sehr viele Reihen reziproker Potenzen (einschließlich der hurwitzschen Zeta Funktion und des Polylogarithmus) können als Spezialfall dieser Funktion… …   Deutsch Wikipedia

  • Función zeta de Lerch — En matematicas, la función zeta de Lerch, a veces llamada función zeta de Hurwitz Lerch, es una función especial que generaliza la función zeta de Hurwitz y el polilogaritmo. Ha sido designada en honor a Mathias Lerch [1]. Contenido 1 Definición… …   Wikipedia Español

  • Mathias Lerch — (Matyáš Lerch, Czech pronunciation: [ˈlɛrx]) (20 February 1860, Milínov 3 August 1922, Schüttenhofen)[1] was an eminent Czech mathematician who published about 250 papers, largely on mathematical analysis and number theory. He studied in… …   Wikipedia

  • Gamma function — For the gamma function of ordinals, see Veblen function. The gamma function along part of the real axis In mathematics, the gamma function (represented by the capital Greek letter Γ) is an extension of the factorial function, with its… …   Wikipedia

  • Función zeta de Riemann — ζ(s) en el plano complejo. El color de un punto s codifica el valor de ζ(s): Colores fuertes denotan valores cercanos a 0 y el tono codifica el valor del argumento. El punto blanco en s=1 es el polo de la función zeta; los puntos negros en el eje …   Wikipedia Español

  • Fonction zêta — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. La fonction zêta (d après la lettre grecque zêta, ou ζ) est le nom de nombreuses fonctions en mathématiques. La plus connue est la fonction zêta de… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”