Dirichlet L-function

Dirichlet L-function

In mathematics, a Dirichlet L-series is a function of the form

L(s,\chi) = \sum_{n=1}^\infty \frac{\chi(n)}{n^s}.

Here χ is a Dirichlet character and s a complex variable with real part greater than 1. By analytic continuation, this function can be extended to a meromorphic function on the whole complex plane, and is then called a Dirichlet L-function and also denoted L(s, χ).

These functions are named after Johann Peter Gustav Lejeune Dirichlet who introduced them in (Dirichlet 1837) to prove the theorem on primes in arithmetic progressions that also bears his name. In the course of the proof, Dirichlet shows that L(s, χ) is non-zero at s = 1. Moreover, if χ is principal, then the corresponding Dirichlet L-function has a simple pole at s = 1.

Contents

Zeros of the Dirichlet L-functions

If χ is a primitive character with χ(−1) = 1, then the only zeros of L(s,χ) with Re(s) < 0 are at the negative even integers. If χ is a primitive character with χ(−1) = −1, then the only zeros of L(s,χ) with Re(s) < 0 are at the negative odd integers.

Up to the possible existence of a Siegel zero, zero-free regions including and beyond the line Re(s) = 1 similar to that of the Riemann zeta function are known to exist for all Dirichlet L-functions.

Just as the Riemann zeta function is conjectured to obey the Riemann hypothesis, so the Dirichlet L-functions are conjectured to obey the generalized Riemann hypothesis.

Euler product

Since a Dirichlet character χ is completely multiplicative, its L-function can also be written as an Euler product in the half-plane of absolute convergence:

L(s,\chi)=\prod_p\left(1-\chi(p)p^{-s}\right)^{-1}\text{ for }\text{Re}(s) > 1,

where the product is over all prime numbers.[1]

Functional equation

Let us assume that χ is a primitive character to the modulus k. Defining

\Lambda(s,\chi) = \left(\frac{\pi}{k}\right)^{-(s+a)/2}
\Gamma\left(\frac{s+a}{2}\right) L(s,\chi),

where Γ denotes the Gamma function and the symbol a is given by

a=\begin{cases}0;&\mbox{if }\chi(-1)=1, \\ 1;&\mbox{if }\chi(-1)=-1,\end{cases}

one has the functional equation

\Lambda(1-s,\overline{\chi})=\frac{i^ak^{1/2}}{\tau(\chi)}\Lambda(s,\chi).

Here we wrote τ(χ) for the Gauss sum

\sum_{n=1}^k\chi(n)\exp(2\pi in/k).

Note that |τ(χ)|=k1/2.

Relation to the Hurwitz zeta-function

The Dirichlet L-functions may be written as a linear combination of the Hurwitz zeta-function at rational values. Fixing an integer k ≥ 1, the Dirichlet L-functions for characters modulo k are linear combinations, with constant coefficients, of the ζ(s,q) where q = m/k and m = 1, 2, ..., k. This means that the Hurwitz zeta-function for rational q has analytic properties that are closely related to the Dirichlet L-functions. Specifically, let χ be a character modulo k. Then we can write its Dirichlet L-function as

L(s,\chi) = \sum_{n=1}^\infty \frac {\chi(n)}{n^s}
= \frac {1}{k^s} \sum_{m=1}^k \chi(m)\; \zeta \left(s,\frac{m}{k}\right).

In particular, the Dirichlet L-function of the trivial character (which implies the modulus k is prime) yields the Riemann zeta-function:

\zeta(s) = \frac {1}{k^s} \sum_{m=1}^k \zeta \left(s,\frac{m}{k}\right).

See also

Notes

  1. ^ Apostol 1976, Theorem 11.17

References

  • Apostol, Tom M. (1976), Introduction to analytic number theory, Undergraduate Texts in Mathematics, New York-Heidelberg: Springer-Verlag, ISBN 978-0-387-90163-3, MR0434929 
  • Apostol, T. M. (2010), "Dirichlet L-function", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F. et al., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR2723248, http://dlmf.nist.gov/25.15 
  • H. Davenport (2000). Multiplicative Number Theory. Springer. ISBN 0-387-95097-4. 
  • Dirichlet, P. G. L. (1837). "Beweis des Satzes, dass jede unbegrenzte arithmetische Progression, deren erstes Glied und Differenz ganze Zahlen ohne gemeinschaftlichen Factor sind, unendlich viele Primzahlen enthält". Abhand. Ak. Wiss. Berlin 48. 

Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Dirichlet eta function — For the modular form see Dedekind eta function. Dirichlet eta function η(s) in the complex plane. The color of a point s encodes the value of η(s). Strong colors denote values close to zero and hue encodes the value s argumen …   Wikipedia

  • Dirichlet beta function — This article is about the Dirichlet beta function. For other beta functions, see Beta function (disambiguation). In mathematics, the Dirichlet beta function (also known as the Catalan beta function) is a special function, closely related to the… …   Wikipedia

  • Dirichlet series — In mathematics, a Dirichlet series is any series of the form where s and an are complex numbers and n = 1, 2, 3, ... . It is a special case of general Dirichlet series. Dirichlet series play a variety of important roles in analytic number theory …   Wikipedia

  • Dirichlet character — In number theory, Dirichlet characters are certain arithmetic functions which arise from completely multiplicative characters on the units of . Dirichlet characters are used to define Dirichlet L functions, which are meromorphic functions with a… …   Wikipedia

  • Dirichlet'sche Eta-Funktion — Die dirichletsche η Funktion in der komplexen Zahlenebene. In der Zahlentheorie ist die dirichletsche η Funktion eine spezielle Funktion, die nach dem deutschen Mathematiker Dirichlet (1805−1859) benannt ist. Sie ist verwandt mit der …   Deutsch Wikipedia

  • Dirichlet'sche η-Funktion — Die dirichletsche η Funktion in der komplexen Zahlenebene. In der Zahlentheorie ist die dirichletsche η Funktion eine spezielle Funktion, die nach dem deutschen Mathematiker Dirichlet (1805−1859) benannt ist. Sie ist verwandt mit der …   Deutsch Wikipedia

  • Dirichlet Laplacian — refers to the mathematical problems with the Helmholtz equation (Delta + lambda) Psi =0 where Delta is the Laplace operator; in the two dimensional space, Delta=frac{partial^2}{partial x^2}+frac{partial^2}{partial y^2}differentiates with respect… …   Wikipedia

  • Dirichlet distribution — Several images of the probability density of the Dirichlet distribution when K=3 for various parameter vectors α. Clockwise from top left: α=(6, 2, 2), (3, 7, 5), (6, 2, 6), (2, 3, 4). In probability and… …   Wikipedia

  • Dirichlet problem — In mathematics, a Dirichlet problem is the problem of finding a function which solves a specified partial differential equation (PDE) in the interior of a given region that takes prescribed values on the boundary of the region. The Dirichlet… …   Wikipedia

  • Dirichlet convolution — In mathematics, the Dirichlet convolution is a binary operation defined for arithmetic functions; it is important in number theory. It was developed by Johann Peter Gustav Lejeune Dirichlet, a German mathematician. Contents 1 Definition 2… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”