Spence's function

Spence's function

In mathematics, Spence's function, or dilogarithm, denoted as Li2(z), is a particular case of the polylogarithm. Lobachevsky's function and Clausen's function are closely related functions. Two related special functions are referred to as Spence's function, the dilogarithm itself, and its reflection with the variable negated:


\operatorname{Li}_2(\pm z) = -\int_0^z{\ln|1\mp\zeta| \over \zeta}\, \mathrm{d}\zeta = \sum_{k=1}^\infty {(\pm z)^k \over k^2};

William Spence, after whom the function was named by early writers in the field, was a Scottish mathematician working in the early nineteenth century.[1] He was at school with John Galt,[2] who later wrote a biographical essay on Spence.

Contents

Identities

\operatorname{Li}_2(-z)=-\operatorname{Li}_2\left(\frac{z}{1+z}\right)-\frac{\ln^2(1+z)}{2}
\operatorname{Li}_2({\rm{i}}z) =\frac{\operatorname{Li}_2(-z^2)}{4}+{\rm{i}} \operatorname{Li}_2(z)
\operatorname{Li}_2(z)+\operatorname{Li}_2(-z)=\frac{1}{2}\operatorname{Li}_2(z^2)
\operatorname{Li}_2(1-z)+\operatorname{Li}_2\left(1-\frac{1}{z}\right)=-\frac{\ln^2z}{2}
\operatorname{Li}_2(z)+\operatorname{Li}_2(1-z)=\frac{{\pi}^2}{6}-\ln z \cdot\ln(1-z)
\operatorname{Li}_2(-z)-\operatorname{Li}_2(1-z)+\frac{1}{2}\operatorname{Li}_2(1-z^2)=-\frac  {{\pi}^2}{12}-\ln z
\operatorname{Li}_2\left(\frac{1}{3}\right)-\frac{1}{6}\operatorname{Li}_2\left(\frac{1}{9}\right)=\frac{{\pi}^2}{18}-\ln^23
\operatorname{Li}_2\left(-\frac{1}{2}\right)+\frac{1}{6}\operatorname{Li}_2\left(\frac{1}{9}\right)=-\frac{{\pi}^2}{18}-\ln2\cdot \ln3-\frac{\ln^22}{2}-\frac{\ln^23}{3}
\operatorname{Li}_2\left(\frac{1}{4}\right)+\frac{1}{3}\operatorname{Li}_2\left(\frac{1}{9}\right)=\frac{{\pi}^2}{18}+2\ln2\ln3-2\ln^22-\frac{2}{3}\ln^23
\operatorname{Li}_2\left(-\frac{1}{3}\right)-\frac{1}{3}\operatorname{Li}_2\left(\frac{1}{9}\right)=-\frac{{\pi}^2}{18}+\frac{1}{6}\ln^23
\operatorname{Li}_2\left(-\frac{1}{8}\right)+\operatorname{Li}_2\left(\frac{1}{9}\right)=-\frac{1}{2}\ln^2{\frac{9}{8}}
36\operatorname{Li}_2\left(\frac{1}{2}\right)-36\operatorname{Li}_2\left(\frac{1}{4}\right)-12\operatorname{Li}_2\left(\frac{1}{8}\right)+6\operatorname{Li}_2\left(\frac{1}{64}\right)={\pi}^2

Special values

OEISA072691
\operatorname{Li}_2(0)=0
OEISA076788
OEISA013661
OEISA09146
\operatorname{Li}_2\left(-\frac{\sqrt5-1}{2}\right)=-\frac{{\pi}^2}{10}-\ln^2 \frac{\sqrt5-1}{2}
=-\frac{{\pi}^2}{10}-\operatorname{arcsch}^2 2
OEISA152115
=-\frac{{\pi}^2}{15}+\frac{1}{2}\operatorname{arcsch}^2 2
\operatorname{Li}_2\left(\frac{3+\sqrt5}{2}\right)=\frac{{\pi}^2}{15}-\frac{1}{2}\ln^2 \frac{\sqrt5-1}{2}
=\frac{{\pi}^2}{15}-\frac{1}{2}\operatorname{arcsch}^2 2
\operatorname{Li}_2\left(\frac{\sqrt5+1}{2}\right)=\frac{{\pi}^2}{10}-\ln^2 \frac{\sqrt5-1}{2}
=\frac{{\pi}^2}{10}-\operatorname{arcsch}^2 2

References

Notes


Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Spence — may refer to:* Spence, Australian Capital Territory, a suburb of Canberra, Australia * Spence, Ontario, a ghost town in Ontario, Canada * Allowance, or pocket money * Spence School, a day school for girls in New York City * Spence (surname),… …   Wikipedia

  • Polylogarithm — Not to be confused with polylogarithmic. In mathematics, the polylogarithm (also known as Jonquière s function) is a special function Lis(z) that is defined by the infinite sum, or power series: It is in general not an elementary function, unlike …   Wikipedia

  • Дилогарифм — Действительная и мнимая части функции Дилогарифм специальная функция в математике, которая обозначается …   Википедия

  • List of mathematical functions — In mathematics, several functions or groups of functions are important enough to deserve their own names. This is a listing of pointers to those articles which explain these functions in more detail. There is a large theory of special functions… …   Wikipedia

  • List of mathematics articles (S) — NOTOC S S duality S matrix S plane S transform S unit S.O.S. Mathematics SA subgroup Saccheri quadrilateral Sacks spiral Sacred geometry Saddle node bifurcation Saddle point Saddle surface Sadleirian Professor of Pure Mathematics Safe prime Safe… …   Wikipedia

  • Nobel Prizes — ▪ 2009 Introduction Prize for Peace       The 2008 Nobel Prize for Peace was awarded to Martti Ahtisaari, former president (1994–2000) of Finland, for his work over more than 30 years in settling international disputes, many involving ethnic,… …   Universalium

  • Mechanism design — The Stanley Reiter diagram above illustrates a game of mechanism design. The upper left space Θ depicts the type space and the upper right space X the space of outcomes. The social choice function f(θ) maps a type profile to an outcome. In games… …   Wikipedia

  • economics — /ek euh nom iks, ee keuh /, n. 1. (used with a sing. v.) the science that deals with the production, distribution, and consumption of goods and services, or the material welfare of humankind. 2. (used with a pl. v.) financial considerations;… …   Universalium

  • Ming Dynasty — Great Ming 大明 ← 1368–1644 …   Wikipedia

  • Information asymmetry — In economics and contract theory, information asymmetry deals with the study of decisions in transactions where one party has more or better information than the other. This creates an imbalance of power in transactions which can sometimes cause… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”