Don Zagier

Don Zagier
Don Zagier

Born 29 June 1951 (1951-06-29) (age 60)
Heidelberg, Germany
Nationality  United States of America
Fields Mathematics
Institutions Max Planck Institute for Mathematics
Collège de France
Alma mater University of Bonn
Doctoral advisor Friedrich Hirzebruch
Doctoral students Winfried Kohnen
Maxim Kontsevich
Known for Gross–Zagier theorem
Herglotz–Zagier function

Don Bernard Zagier (born 29 June 1951) is an American mathematician whose main area of work is number theory. He is currently one of the directors of the Max Planck Institute for Mathematics in Bonn, Germany, and a professor at the Collège de France in Paris, France.

He was born in Heidelberg, Germany. His mother was a psychiatrist, and his father was the dean of instruction at the American College of Switzerland. His father held five different citizenships, and he spent his youth living in many different countries. After finishing high school and attending Winchester College for a year, he studied for three years at M.I.T., completing his bachelor's and master's degrees and being named a Putnam Fellow in 1967 at the age of 16. He then wrote a doctoral dissertation on characteristic classes under Friedrich Hirzebruch at Bonn, graduating at 21, and later collaborated with Hirzebruch in work on Hilbert modular surfaces.

One of his most famous results is a joint work with Benedict Gross (the so-called Gross–Zagier formula). This formula relates the first derivative of the complex L-series of an elliptic curve evaluated at 1 to the height of a certain Heegner point. This theorem has many applications including implying cases of the Birch and Swinnerton-Dyer conjecture along with being a key ingredient to Dorian Goldfeld's solution of the class number problem.

He also is known for discovering a short and elementary proof of Fermat's theorem on sums of two squares.[1][2]

Zagier won the Cole Prize in Number Theory in 1987[3] and the von Staudt Prize in 2001.[4]

Contents

Common quotations

"Upon looking at these numbers, one has the feeling of being in the presence of one of the inexplicable secrets of creation." The First 50 Million Prime Numbers

"There are two facts about the distribution of prime numbers of which I hope to convince you so overwhelmingly that they will be permanently engraved in your hearts. The first is that, despite their simple definitions and role as the building blocks of the natural numbers, the prime numbers belong to the most arbitrary and ornery objects studied by mathematicians: they grow like weeds among the natural numbers, seeming to obey no other law than that of chance, and nobody can predict where the next one will sprout. The second fact is even more astonishing, for it states just the opposite: that the prime numbers exhibit stunning regularity, that there are laws governing their behavior, and that they obey these laws with almost military precision." The First 50 Million Prime Numbers

Selected publications

  • Zagier, D. (1990), "A One-Sentence Proof That Every Prime p ≡ 1 (mod 4) Is a Sum of Two Squares", The American Mathematical Monthly (Mathematical Association of America) 97 (2): 144, doi:10.2307/2323918, JSTOR 2323918 .
  • Zagier, D. "The First 50 Million Prime Numbers." Math. Intel. 0, 221–224, 1977.

See also

  • Ring of periods

References

External links



Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Don Zagier — 2006 in Oberwolfach Don Bernard Zagier (* 29. Juni 1951 in Heidelberg) ist ein amerikanischer Mathematiker. Derzeit ist er einer der Direktoren des Max Planck Instituts für Mathematik in Bonn und Professor am französischen Collège de France in… …   Deutsch Wikipedia

  • Don Zagier — à Oberwolfach Don Bernhard Zagier, né le 29 juin 1951 à Heidelberg en Allemagne, est un mathématicien américain spécialisé en théorie des nombres, en théorie des formes modulaires et leurs liens avec la topologie. Il est titu …   Wikipédia en Français

  • Zagier — Don Zagier 2006 in Oberwolfach Don Bernhard Zagier (* 29. Juni 1951 in Heidelberg) ist ein amerikanischer Mathematiker. Derzeit ist er einer der Direktoren des Max Planck Instituts für Mathematik in Bonn und Professor am französischen Collège de… …   Deutsch Wikipedia

  • Elementare Zahlentheorie — Ursprünglich ist die Zahlentheorie (auch: Arithmetik) ein Teilgebiet der Mathematik, das sich allgemein mit den Eigenschaften der ganzen Zahlen und insbesondere mit den Lösungen von Gleichungen in den ganzen Zahlen (Diophantische Gleichung)… …   Deutsch Wikipedia

  • Friedrich E. P. Hirzebruch — Friedrich Hirzebruch an der DMV Jahrestagung 1980 in Dortmund Friedrich Ernst Peter Hirzebruch, auch Friedrich E. P. Hirzebruch, (* 17. Oktober 1927 in Hamm) ist ein deutscher Mathematiker. Er gehört zu den international bedeutendsten… …   Deutsch Wikipedia

  • Friedrich Ernst Peter Hirzebruch — Friedrich Hirzebruch an der DMV Jahrestagung 1980 in Dortmund Friedrich Ernst Peter Hirzebruch, auch Friedrich E. P. Hirzebruch, (* 17. Oktober 1927 in Hamm) ist ein deutscher Mathematiker. Er gehört zu den international bedeutendsten… …   Deutsch Wikipedia

  • Hirzebruch — Friedrich Hirzebruch an der DMV Jahrestagung 1980 in Dortmund Friedrich Ernst Peter Hirzebruch, auch Friedrich E. P. Hirzebruch, (* 17. Oktober 1927 in Hamm) ist ein deutscher Mathematiker. Er gehört zu den international bedeutendsten… …   Deutsch Wikipedia

  • Proofs of Fermat's theorem on sums of two squares — Fermat s theorem on sums of two squares asserts that an odd prime number p can be expressed as: p = x^2 + y^2with integer x and y if and only if p is congruent to 1 (mod 4). The statement was announced by Fermat in 1640, but he supplied no proof …   Wikipedia

  • Polylogarithm — Not to be confused with polylogarithmic. In mathematics, the polylogarithm (also known as Jonquière s function) is a special function Lis(z) that is defined by the infinite sum, or power series: It is in general not an elementary function, unlike …   Wikipedia

  • Théorème des deux carrés de Fermat — Pierre Fermat En mathématiques, le théorème des deux carrés de Fermat énonce les conditions pour qu’un nombre entier soit la somme de deux carrés parfaits (c est à dire de deux carrés d’entiers) et précise de combien de façons différentes il peut …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”