Heegner point

Heegner point

In mathematics, a Heegner point is a point on a modular elliptic curve that is the image of a quadratic imaginary point of the upper half-plane. They were defined by Bryan Birch and named after Kurt Heegner, who used similar ideas to prove Gauss's conjecture on imaginary quadratic fields of class number one.

The Gross-Zagier theorem describes the height of Heegner points in terms of a derivative of the L-function of the elliptic curve at the point "s"=1. In particular if the elliptic curve has (analytic) rank 1, then the Heegner points can be used to construct a rational point on the curve of infinite order (so the Mordell-Weil group has rank at least 1). More generally, together with Kohnen, Gross and Zagier showed that Heegner points could be used to construct rational points on the curve for each positive integer "n", and the heights of these points were the coefficients of a modular form of weight 3/2.

Kolyvagin later used Heegner points to construct Euler systems, and used this to prove much of the Birch-Swinnerton-Dyer conjecture for rank 1 elliptic curves. Shouwu Zhang generalized Gross-Zagier theorem from elliptic curve to the case of abelian variety. Brown proved the Birch-Swinnerton-Dyer conjecture for most rank 1 elliptic curves over global fields of positive characteristic.

References

*Heegner, Kurt [http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/BF01174749 "Diophantische Analysis und Modulfunktionen."] Math. Z. 56, (1952). 227--253.
* [http://assets.cambridge.org/052183/659X/excerpt/052183659X_excerpt.pdf Heegner points: the beginnings] by B. Birch, in "Heegner Points and Rankin L-Series" (Mathematical Sciences Research Institute Publications) by Henri Darmon (Editor), Shou-wu Zhang (Editor), ISBN 0-521-83659-X
*Gross, Benedict H.; Zagier, Don B. [http://www.springerlink.com/openurl.asp?genre=article&id=doi:10.1007/BF01388809 "Heegner points and derivatives of L-series."] Invent. Math. 84 (1986), no. 2, 225-320.
*Gross, B.; Kohnen, W.; Zagier, D. [http://springerlink.metapress.com/openurl.asp?genre=article&id=doi:10.1007/BF01458081 "Heegner points and derivatives of L-series. II."] Math. Ann. 278 (1987), no. 1-4, 497-562.
* Brown, M.L.; Heegner modules and elliptic curves. Springer Verlag Lecture Notes In Mathematics No. 1849, Springer Verlag 2004 (517pp).


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Heegner — *Kurt Heegner was a German mathematician *Heegner points are special points on Elliptic curves *The Stark–Heegner theorem identifies the imaginary quadratic fields of class number 1. *A Heegner number is a number n such that Q ( radic;− n ) is an …   Wikipedia

  • Kurt Heegner — (1893–1965) was a German private scholar from Berlin, who specialized in radio engineering and mathematics. He is now famous for his mathematical discoveries in number theory.In 1952 Heegner published what he claimed was the solution of a classic …   Wikipedia

  • Problème du nombre de classes pour les corps quadratiques imaginaires — En mathématiques, le problème du nombre de classes de Gauss pour les corps quadratiques imaginaires, au sens usuel, est de fournir pour chaque entier n ≥ 1, la liste complète des corps quadratiques imaginaires dont le nombre de classes vaut n. C… …   Wikipédia en Français

  • List of mathematics articles (H) — NOTOC H H cobordism H derivative H index H infinity methods in control theory H relation H space H theorem H tree Haag s theorem Haagerup property Haaland equation Haar measure Haar wavelet Haboush s theorem Hackenbush Hadamard code Hadamard… …   Wikipedia

  • Don Zagier — à Oberwolfach Don Bernhard Zagier, né le 29 juin 1951 à Heidelberg en Allemagne, est un mathématicien américain spécialisé en théorie des nombres, en théorie des formes modulaires et leurs liens avec la topologie. Il est titu …   Wikipédia en Français

  • Siegel zero — In mathematics, more specifically in the field of analytic number theory, a Siegel zero, named after Carl Ludwig Siegel, is a type of potential counterexample to the generalized Riemann hypothesis, on the zeroes of Dirichlet L function. There are …   Wikipedia

  • Bryan John Birch — F.R.S. (born 1931) is a British mathematician. His name has been given to the Birch and Swinnerton Dyer conjecture.As a doctoral student at the University of Cambridge, he was officially working under J. W. S. Cassels. More influenced by Harold… …   Wikipedia

  • Système d'Euler — En mathématiques, un système d Euler est un objet technique dans la théorie des modules de Galois, mis en évidence aux environ de 1990 par Victor Kolyvagin (en) dans son travail sur les points de Heegner (en) sur les courbes elliptiques …   Wikipédia en Français

  • Euler system — In mathematics, an Euler system is a technical device in the theory of Galois modules, first noticed as such in the work around 1990 by Victor Kolyvagin on Heegner points on modular elliptic curves. This concept has since undergone an axiomatic… …   Wikipedia

  • Don Zagier — Born 29 June 1951 (1951 06 29) (age 60) Heidelberg …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”