Iwasawa theory

Iwasawa theory

In number theory, Iwasawa theory is the study of objects of arithmetic interest over infinite towers of number fields. It began as a Galois module theory of ideal class groups, initiated by Kenkichi Iwasawa, in the 1950s, as part of the theory of cyclotomic fields. In the early 1970s, Barry Mazur considered generalizations of Iwasawa theory to abelian varieties. More recently (early 90s), Ralph Greenberg has proposed an Iwasawa theory for motives.

Contents

Formulation

Iwasawa worked with so-called \mathbb{Z}_p-extensions: infinite extensions of a number field F with Galois group Γ isomorphic to the additive group of p-adic integers for some prime p. Every closed subgroup of Γ is of the form  \Gamma^{p^n} , so by Galois theory, a  \mathbb{Z}_p -extension  F_\infty/F is the same thing as a tower of fields  F = F_0 \subset F_1 \subset F_2 \subset \ldots \subset F_\infty such that \textrm{Gal}(F_n/F)\cong \mathbb{Z}/p^n\mathbb{Z}. Iwasawa studied classical Galois modules over Fn by asking questions about the structure of modules over F_\infty.

More generally, Iwasawa theory asks questions about the structure of Galois modules over extensions with Galois group a p-adic Lie group.

Example

Let p be a prime number and let K = Qp) be the field generated over Q by the pth roots of unity. Iwasawa considered the following tower of number fields:

 K = K_{0} \subset K_{1} \subset \cdots \subset K_{\infty},

where Kn is the field generated by adjoining to K the pn+1st roots of unity and  K_\infty = \bigcup K_n . The fact that \textrm{Gal}(K_n/K)\simeq \mathbb{Z}/p^n\mathbb{Z} implies, by infinite Galois theory, that \textrm{Gal}(K_{\infty}/K) is isomorphic to  \mathbb{Z}_p . In order to get an interesting Galois module here, Iwasawa took the ideal class group of Kn, and let In be its p-torsion part. There are norm maps I_m\rightarrow I_n whenever m > n, and this gives us the data of an inverse system. If we set I = \varprojlim I_n, then it is not hard to see from the inverse limit construction that I is a module over  \mathbb{Z}_p. In fact, I is a module over the Iwasawa algebra \Lambda=\mathbb{Z}_p[[\Gamma]] (i.e. the completed group ring of Γ over \mathbb{Z}_p). This is a well-behaved ring (a 2-dimensional, regular local ring), and this makes it possible to classify modules over it in a way that is not too coarse. From this classification it is possible to recover information about the p-part of the class group of K.

The motivation here is that the p-torsion in the ideal class group of K had already been identified by Kummer as the main obstruction to the direct proof of Fermat's last theorem.

Connections with p-adic analysis

From this beginning in the 1950s, a substantial theory has been built up. A fundamental connection was noticed between the module theory, and the p-adic L-functions that were defined in the 1960s by Kubota and Leopoldt. The latter begin from the Bernoulli numbers, and use interpolation to define p-adic analogues of the Dirichlet L-functions. It became clear that the theory had prospects of moving ahead finally from Kummer's century-old results on regular primes.

The main conjecture of Iwasawa theory was formulated as an assertion that two methods of defining p-adic L-functions (by module theory, by interpolation) should coincide, as far as that was well-defined. This was proved by Mazur & Wiles (1984) for Q, and for all totally real number fields by Wiles (1990). These proofs were modeled upon Ken Ribet's proof of the converse to Herbrand's theorem (so-called Herbrand-Ribet theorem).

Karl Rubin found a more elementary proof of the Mazur-Wiles theorem by using Kolyvagin's Euler systems, described in Lang (1990) and Washington (1997), and later proved other generalizations of the main conjecture for imaginary quadratic fileds.

Generalizations

The Galois group of the infinite tower, the starting field, and the sort of arithmetic module studied can all be varied. In each case, there is a main conjecture linking the tower to a p-adic L-function.

In 2002, Chris Skinner and Eric Urban claimed a proof of a main conjecture for GL(2). In 2010, they posted a preprint (Skinner & Urban 2010).

Notes

References

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Iwasawa — Kenkichi (jap. 岩澤 健吉; * 11. September 1917 im Dorf Shinshuku bei Kiryū; † 26. Oktober 1998 in Tokio) war ein japanischer Mathematiker, der grundlegende Beiträge zur algebraischen Zahlentheorie, speziell der Theorie der Kreisteilungskörper… …   Deutsch Wikipedia

  • Iwasawa Kenkichi — (jap. 岩澤 健吉; * 11. September 1917 im Dorf Shinshuku bei Kiryū; † 26. Oktober 1998 in Tokio) war ein japanischer Mathematiker, der grundlegende Beiträge zur algebraischen Zahlentheorie, speziell der Theorie der Kreisteilungskörper, lieferte.… …   Deutsch Wikipedia

  • Iwasawa-Theorie — Die Iwasawa Theorie ist innerhalb der Mathematik im Bereich der Zahlentheorie eine Theorie zur Bestimmung der Idealklassengruppe von unendlichen Körpertürmen, deren Galoisgruppe isomorph zu den p adischen Zahlen ist. Die Theorie wurde in den… …   Deutsch Wikipedia

  • Kenkichi Iwasawa — Iwasawa Kenkichi (jap. 岩澤 健吉; * 11. September 1917 im Dorf Shinshuku bei Kiryū; † 26. Oktober 1998 in Tokio) war ein japanischer Mathematiker, der grundlegende Beiträge zur algebraischen Zahlentheorie, speziell der Theorie der Kreisteilungskörper …   Deutsch Wikipedia

  • Iwasawa decomposition — In mathematics, the Iwasawa decomposition KAN of a semisimple Lie group generalises the way a square real matrix can be written as a product of an orthogonal matrix and an upper triangular matrix (a consequence of Gram Schmidt orthogonalization) …   Wikipedia

  • Kenkichi Iwasawa — (岩澤 健吉 Iwasawa Kenkichi , September 11 1917 – October 26 1998) was a Japanese mathematician who is known for his influence on algebraic number theory.Iwasawa was born in Shinshuku mura, a town near Kiryu, in Gunma Prefecture. He attended… …   Wikipedia

  • Théorie d'Iwasawa — La théorie d Iwasawa peut être vue comme une tentative d étendre les résultats arithmétiques classiques sur les corps de nombres (extensions finies du corps des rationnels) à des extensions infinies de , par des procédés de passage à la limite… …   Wikipédia en Français

  • Teoría de Iwasawa — En teoría de números, la Teoría de Iwasawa es una teoría de módulo de Galois de los grupos de clases ideales, que fuera postulada por Kenkichi Iwasawa, hacia 1950, como parte de la teoría de los campos ciclotómicos. A comienzos de 1970, Barry… …   Wikipedia Español

  • List of algebraic number theory topics — This is a list of algebraic number theory topics. Contents 1 Basic topics 2 Important problems 3 General aspects 4 Class field theory …   Wikipedia

  • Number theory — A Lehmer sieve an analog computer once used for finding primes and solving simple diophantine equations. Number theory is a branch of pure mathematics devoted primarily to the study of the integers. Number theorists study prime numbers (the… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”