Krull dimension

Krull dimension

In commutative algebra, the Krull dimension of a ring R, named after Wolfgang Krull (1899–1971), is the supremum of the number of strict inclusions in a chain of prime ideals. The Krull dimension need not be finite even for a Noetherian ring.

A field k has Krull dimension 0; more generally, k[x1,...,xn] has Krull dimension n. A principal ideal domain that is not a field has Krull dimension 1.

Contents

Explanation

We say that a strict chain of inclusions of prime ideals of the form: \mathfrak{p}_0\subsetneq \mathfrak{p}_1\subsetneq \ldots \subsetneq \mathfrak{p}_n is of length n. That is, it is counting the number of strict inclusions, not the number of primes, although these only differ by 1. Given a prime \mathfrak{p}\subset R, we define the height of \mathfrak{p}, written \operatorname{ht}(\mathfrak{p}) to be the supremum of the set \{n\in \mathbb{N}: \mathfrak{p} \text{ is the supremum of a strict chain of length } n \}

We define the Krull dimension of R to be the supremum of the heights of all of its primes.

Nagata gave an example of a ring that has infinite Krull dimension even though every prime ideal has finite height.[citation needed] Nagata also gave an example of a Noetherian ring where not every chain can be extended to a maximal chain.[1] Rings in which every chain of prime ideals can be extended to a maximal chain are known as catenary rings.

Krull dimension and schemes

It follows readily from the definition of the spectrum of a ring \operatorname{Spec}(R), the space of prime ideals of R equipped with the Zariski topology, that the Krull dimension of R is precisely equal to the irreducible dimension of its spectrum. This follows immediately from the Galois connection between ideals of R and closed subsets of \operatorname{Spec}(R) and the elementary observation that the prime ideals of R correspond by the definition of the spectrum to the generic points of the closed subsets they to which they correspond under the Galois connection.

Examples

  • The dimension of a polynomial ring over a field k[x_1 ,\ldots,x_d] is the number of indeterminates. These rings correspond to affine spaces in the language of schemes, so this result can be thought of as foundational. In general, if R is a Noetherian ring, then the dimension of R[x] is d + 1. If the Noetherianity hypothesis is dropped, then R[x] can have dimension anywhere between d + 1 and 2d + 1.
  • The ring of integers \mathbb Z has dimension 1.

Krull Dimension of a Module

If R is a commutative ring, and M is an R-module, we define the Krull dimension of M to be the Krull dimension of the quotient of R making M a faithful module. That is, we define it by the formula:

\operatorname{dim}_R M := \operatorname{dim}( R/\operatorname{Ann}_R(M))

where \operatorname{Ann}_R(M) , the annihilator, is the kernel of the natural map R\to End_R(M) of R into the ring of R-linear endomorphisms on M.

In the language of schemes, finite type modules are interpreted as coherent sheaves, or generalized finite rank vector bundles.

See also

Notes

  1. ^ Nagata, M. Local Rings (1962). Wiley, New York.

Bibliography


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Dimension (vector space) — In mathematics, the dimension of a vector space V is the cardinality (i.e. the number of vectors) of a basis of V. It is sometimes called Hamel dimension or algebraic dimension to distinguish it from other types of dimension. This description… …   Wikipedia

  • Krull — The term Krull can refer to:* Felix Krull, the title character in Thomas Mann s book The Confessions of Felix Krull, Confidence Man: The Early Years * Krull , a 1983 heroic fantasy film ** Krull (video game), the arcade, Atari and pinball… …   Wikipedia

  • Dimension (disambiguation) — A dimension is a spatial characteristic of an object; that is, length, width, or height. Dimension may also be: Contents 1 Science: 2 Mathematics: 3 Media: 4 Other …   Wikipedia

  • Dimension theory (algebra) — In mathematics, dimension theory is a branch of commutative algebra studying the notion of the dimension of a commutative ring, and by extension that of a scheme. See also Krull dimension Dimension of an algebraic variety Hilbert polynomial… …   Wikipedia

  • Dimension D'un Espace Vectoriel — En mathématiques, la dimension d un espace vectoriel E est le cardinal (c est à dire le nombre de vecteurs) de toute base de E. Elle est parfois appelée la dimension de Hamel ou la dimension algébrique à distinguer d autres types de dimension.… …   Wikipédia en Français

  • Dimension de Krull — En mathématiques, et plus particulièrement en géométrie algébrique, la taille et la complexité d une variété algébrique (ou d un schéma) est d abord mesurée sa dimension. Elle est basée sur la topologie de Zariski et coïncide avec l intuition… …   Wikipédia en Français

  • Dimension — Sur les autres projets Wikimedia : « Dimension », sur le Wiktionnaire (dictionnaire universel) Dans le sens commun, la notion de dimension renvoie à la taille ; les dimensions d une pièce sont sa longueur, sa largeur et sa… …   Wikipédia en Français

  • Dimension d'un espace vectoriel — En algèbre linéaire, la dimension de Hamel ou simplement la dimension est un invariant associé à tout espace vectoriel E sur un corps K. La dimension de E est le cardinal commun à toutes ses bases. Ce nombre est noté dim K(E) (lire… …   Wikipédia en Français

  • Dimension (kommutative Algebra) — Die Dimension oder genauer Krulldimension (nach Wolfgang Krull), auch Chevalleydimension (nach Claude Chevalley), eines kommutativen Ringes mit Einselement ist die anschauliche Dimension der ihm in der algebraischen Geometrie zugeordneten… …   Deutsch Wikipedia

  • Dimension combinatoire — La dimension combinatoire est une notion de dimension qui n est utilisée essentiellement qu en géométrie algébrique avec la topologie de Zariski. Sommaire 1 Définition 2 Intuition exemple 3 Lien interne …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”