Descent (category theory)

Descent (category theory)

In mathematics, the idea of descent has come to stand for a very general idea, extending the intuitive idea of 'gluing' in topology. Since the topologists' glue is actually the use of equivalence relations on topological spaces, the theory starts with some ideas on identification.

A sophisticated theory resulted. It was a tribute to the efforts to use category theory to get around the alleged 'brutality' of imposing equivalence relations within geometric categories. One outcome was the eventual definition adopted in topos theory of geometric morphism, to get the correct notion of surjectivity.

Descent of vector bundles

The case of the construction of vector bundles from data on a disjoint union of topological spaces is a straightforward place to start.

Suppose X is a topological space covered by open sets Xi. Let Y be the disjoint union of the Xi, so that there is a natural mapping

p : YX.

We think of Y as 'above' X, with the Xi projection 'down' onto X. With this language, descent implies a vector bundle on Y (so, a bundle given on each Xi), and our concern is to 'glue' those bundles Vi, to make a single bundle V on X. What we mean is that V should, when restricted to Xi, give back Vi, up to a bundle isomorphism.

The data needed is then this: on each overlap


intersection of Xi and Xj, we'll require mappings


to use to identify Vi and Vj there, fiber by fiber. Further the fij must satisfy conditions based on the reflexive, symmetric and transitive properties of an equivalence relation (gluing conditions). For example the composition

fijofjk = fik

for transitivity (and choosing apt notation). The fii should be identity maps and hence the symmetry becomes invertibility of fij (so that it is fiberwise an isomorphism).

These are indeed standard conditions in fiber bundle theory (see transition function). One important application to note is change of fiber: if the fij are all you need to make a bundle, then there are many ways to make an associated bundle. That is, we can take essentially same fij, acting on various fibers.

Another major point is the relation with the chain rule: the discussion of the way there of constructing tensor fields can be summed up as 'once you learn to descend the tangent bundle, for which transitivity is the Jacobian chain rule, the rest is just 'naturality of tensor constructions'.

To move closer towards the abstract theory we need to interpret the disjoint union of the


now as


the fiber product (here an equalizer) of two copies of the projection p. The bundles on the Xij that we must control are actually V′ and V", the pullbacks to the fiber of V via the two different projection maps to X.

Therefore by going to a more abstract level one can eliminate the combinatorial side (that is, leave out the indices) and get something that makes sense for p not of the special form of covering with which we began. This then allows a category theory approach: what remains to do is to re-express the gluing conditions.


The ideas were developed in the period 1955-1965 (which was roughly the time at which the requirements of algebraic topology were met but those of algebraic geometry were not). From the point of view of abstract category theory the work of comonads of Beck was a summation of those ideas; see Beck's monadicity theorem.

The difficulties of algebraic geometry with passage to the quotient are acute. The urgency (to put it that way) of the problem for the geometers accounts for the title of the 1959 Grothendieck seminar TDTE on theorems of descent and techniques of existence (see FGA) connecting the descent question with the representable functor question in algebraic geometry in general, and the moduli problem in particular.

Further reading

Angelo Vistoli,

Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Outline of category theory — The following outline is provided as an overview of and guide to category theory: Category theory – area of study in mathematics that examines in an abstract way the properties of particular mathematical concepts, by formalising them as… …   Wikipedia

  • List of category theory topics — This is a list of category theory topics, by Wikipedia page. Specific categories *Category of sets **Concrete category *Category of vector spaces **Category of graded vector spaces *Category of finite dimensional Hilbert spaces *Category of sets… …   Wikipedia

  • Monad (category theory) — For the uses of monads in computer software, see monads in functional programming. In category theory, a branch of mathematics, a monad, Kleisli triple, or triple is an (endo )functor, together with two natural transformations. Monads are used in …   Wikipedia

  • Higher category theory — is the part of category theory at a higher order, which means that some equalities are replaced by explicit arrows in order to be able to explicitly study the structure behind those equalities. Contents 1 Strict higher categories 2 Weak higher… …   Wikipedia

  • Descent — Not to be confused with Dissent. Descent may refer to: In genealogy and inheritance: Common descent, concept in evolutionary biology Kinship and descent, one of the major concepts of cultural anthropology Pedigree chart or family tree Ancestry… …   Wikipedia

  • Fibred category — Fibred categories are abstract entities in mathematics used to provide a general framework for descent theory. They formalise the various situations in geometry and algebra in which inverse images (or pull backs) of objects such as vector bundles …   Wikipedia

  • Number theory — A Lehmer sieve an analog computer once used for finding primes and solving simple diophantine equations. Number theory is a branch of pure mathematics devoted primarily to the study of the integers. Number theorists study prime numbers (the… …   Wikipedia

  • Background and genesis of topos theory — This page gives some very general background to the mathematical idea of topos. This is an aspect of category theory, and has a reputation for being abstruse. The level of abstraction involved cannot be reduced beyond a certain point; but on the… …   Wikipedia

  • Common descent — For use of the term in linguistics and philology, see Comparative method, Historical linguistics, Proto language, and Textual criticism. Part of a series on Evolutionary Biology …   Wikipedia

  • Evolution as fact and theory — Part of a series on Evolutionary Biology …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”