 Descent (category theory)

In mathematics, the idea of descent has come to stand for a very general idea, extending the intuitive idea of 'gluing' in topology. Since the topologists' glue is actually the use of equivalence relations on topological spaces, the theory starts with some ideas on identification.
A sophisticated theory resulted. It was a tribute to the efforts to use category theory to get around the alleged 'brutality' of imposing equivalence relations within geometric categories. One outcome was the eventual definition adopted in topos theory of geometric morphism, to get the correct notion of surjectivity.
Descent of vector bundles
The case of the construction of vector bundles from data on a disjoint union of topological spaces is a straightforward place to start.
Suppose X is a topological space covered by open sets X_{i}. Let Y be the disjoint union of the X_{i}, so that there is a natural mapping
 p : Y → X.
We think of Y as 'above' X, with the X_{i} projection 'down' onto X. With this language, descent implies a vector bundle on Y (so, a bundle given on each X_{i}), and our concern is to 'glue' those bundles V_{i}, to make a single bundle V on X. What we mean is that V should, when restricted to X_{i}, give back V_{i}, up to a bundle isomorphism.
The data needed is then this: on each overlap
 X_{ij},
intersection of X_{i} and X_{j}, we'll require mappings
 f_{ij}
to use to identify V_{i} and V_{j} there, fiber by fiber. Further the f_{ij} must satisfy conditions based on the reflexive, symmetric and transitive properties of an equivalence relation (gluing conditions). For example the composition
 f_{ij}of_{jk} = f_{ik}
for transitivity (and choosing apt notation). The f_{ii} should be identity maps and hence the symmetry becomes invertibility of f_{ij} (so that it is fiberwise an isomorphism).
These are indeed standard conditions in fiber bundle theory (see transition function). One important application to note is change of fiber: if the f_{ij} are all you need to make a bundle, then there are many ways to make an associated bundle. That is, we can take essentially same f_{ij}, acting on various fibers.
Another major point is the relation with the chain rule: the discussion of the way there of constructing tensor fields can be summed up as 'once you learn to descend the tangent bundle, for which transitivity is the Jacobian chain rule, the rest is just 'naturality of tensor constructions'.
To move closer towards the abstract theory we need to interpret the disjoint union of the
 X_{ij}
now as
 Y×_{X}Y,
the fiber product (here an equalizer) of two copies of the projection p. The bundles on the X_{ij} that we must control are actually V′ and V", the pullbacks to the fiber of V via the two different projection maps to X.
Therefore by going to a more abstract level one can eliminate the combinatorial side (that is, leave out the indices) and get something that makes sense for p not of the special form of covering with which we began. This then allows a category theory approach: what remains to do is to reexpress the gluing conditions.
History
The ideas were developed in the period 19551965 (which was roughly the time at which the requirements of algebraic topology were met but those of algebraic geometry were not). From the point of view of abstract category theory the work of comonads of Beck was a summation of those ideas; see Beck's monadicity theorem.
The difficulties of algebraic geometry with passage to the quotient are acute. The urgency (to put it that way) of the problem for the geometers accounts for the title of the 1959 Grothendieck seminar TDTE on theorems of descent and techniques of existence (see FGA) connecting the descent question with the representable functor question in algebraic geometry in general, and the moduli problem in particular.
Further reading
Angelo Vistoli, http://arxiv.org/abs/math.AG/0412512
Categories:
Wikimedia Foundation. 2010.