Tensor field

Tensor field

In mathematics, physics and engineering, a tensor field is a very general concept of variable geometric quantity. It is used in differential geometry and the theory of manifolds, in algebraic geometry, in general relativity, in the analysis of stress and strain in materials, and in numerous applications in the physical sciences and engineering. It is a generalisation of the idea of vector field, which can be thought of as a 'vector that varies from point to point'.

It should also be noted that many mathematical structures informally called 'tensors' are actually 'tensor fields', fields defined over a manifold which define a tensor at every point of the manifold. See the tensor article for an elementary introduction to tensors.

Geometric introduction

The geometric intuition for a vector field is of an 'arrow' attached to each point of a region, with variable length and direction. Our idea of a vector field on some curved space is supported by the example of a weather map showing horizontal wind velocity, at each point of the Earth's surface.

The general idea of tensor field combines the requirement of richer geometry — for example an ellipsoid varying from point to point, in the case of a metric tensor — with the idea that we don't want our notion to depend on the particular method of mapping the surface. It should exist independently of latitude and longitude, or whatever particular 'cartographic projection' we are using to introduce numerical co-ordinates.

The vector bundle explanation

The contemporary mathematical expression of the idea of tensor field breaks it down into a two-step concept.

There is the idea of vector bundle, which is a natural idea of 'vector space depending on parameters' — the parameters being in a manifold. For example a "vector space of one dimension depending on an angle" could look like a Möbius band as well as a cylinder. Given a vector bundle "V" over "M", the corresponding field concept is called a "section" of the bundle: for m varying over "M", a choice of vector

:"vm" in "V"m,

the vector space 'at' "m".

Since the tensor product concept is independent of any choice of basis, taking the tensor product of two vector bundles on "M" is routine. Starting with the tangent bundle (the bundle of tangent spaces) the whole apparatus explained at component-free treatment of tensors carries over in a routine way — again independently of co-ordinates, as mentioned in the introduction.

We therefore can give a definition of tensor field, namely as a section of some tensor bundle. (There are vector bundles which are not tensor bundles: the Möbius band for instance.) This is then guaranteed geometric content, since everything has been done in an intrinsic way. More precisely, a tensor field assigns to any given point of the manifold a tensor in the space

:V otimes ... otimes V otimes V^* otimes ... otimes V^*

where V is the tangent space at that point and V* is the cotangent space. See also tangent bundle and cotangent bundle.

Given two tensor bundles "E" → "M" and "F"→"M", a map "A": Γ("E") → Γ("F") from the space of sections of "E" to sections of "F" can be considered itself as a tensor section of "E"*⊗"F" if and only if it satisfies "A"("fs",...) = "fA"("s",...) in each argument, where "f" is a smooth function on "M". Thus a tensor is not only a linear map on the vector space of sections, but a "C"("M")-linear map on the module of sections. This property is used to check, for example, that even though the Lie derivative and covariant derivative are not tensors, the torsion and curvature tensors built from them are.

Notation

The notation for tensor fields can sometimes be confusingly similar to the notation for tensor spaces. Thus, the tangent bundle "TM" = "T"("M") might sometimes be written as:T_0^1(M)=T(M) =TM to emphasize that the tangent bundle is the range space of the (1,0) tensor fields on the manifold "M". Do not confuse this with the very similar looking notation

:T_0^1(V);

in the latter case, we just have one tensor space, whereas in the former, we have a tensor space defined for each point in the manifold "M".

Curly (script) letters are sometimes used to denote the set of infinitely-differentiable tensor fields on "M". Thus,:mathcal{T}^m_n(M)are the sections of the ("m","n") tensor bundle on "M" which are infinitely-differentiable. A tensor field is an element of this set.

The "C"("M") module explanation

There is another more abstract (but often useful) way of characterizing tensor fields on a manifold "M" which turns out to actually make tensor fields into honest tensors (i.e. "single" multilinear mappings), though of a different type (and this is "not" usually why one often says "tensor" when one really means "tensor field"). First, we may consider the set of all smooth (C) vector fields on "M", mathcal{T}(M) (see the section on notation above) as a single space — a module over the ring of smooth functions, "C"("M"), by pointwise scalar multiplication. The notions of multilinearity and tensor products extend easily to the case of modules over any commutative ring.

As a motivating example, consider the space mathcal{T}^*(M) of smooth covector fields (1-forms), also a module over the smooth functions. These act on smooth vector fields to yield smooth functions by pointwise evaluation, namely, given a covector field "ω" and a vector field "X", we define

:("ω"("X"))("p") = "ω"("p")("X"("p")).

Because of the pointwise nature of everything involved, the action of "ω" on "X" is a "C"("M")-linear map, that is,

:("ω"("fX"))("p") = "f"("p") "ω"("p")("X"("p")) = ("fω")("p")("X"("p"))

for any "p" in "M" and smooth function "f". Thus we can regard covector fields not just as sections of the cotangent bundle, but also linear mappings of vector fields into functions. By the double-dual construction, vector fields can similarly be expressed as mappings of covector fields into functions (namely, we could start "natively" with covector fields and work up from there).

In a complete parallel to the construction of ordinary single tensors (not fields!) on "M" as multilinear maps on vectors and covectors, we can regard general ("k","l") tensor fields on "M" as "C"("M")-multilinear maps defined on "l" copies of mathcal{T}(M) and "k" copies of mathcal{T}^*(M) into "C"("M").

Now, given any arbitrary mapping "T" from a product of "k" copies of mathcal{T}^*(M) and "l" copies of mathcal{T}(M) into "C"("M"), it turns out that it arises from a tensor field on "M" if and only if it is a multilinear over "C"("M"). Thus this kind of multilinearity implicitly expresses the fact that we're really dealing with a pointwise-defined object, i.e. a tensor field, as opposed to a function which, even when evaluated at a single point, depends on all the values of vector fields and 1-forms simultaneously.

A frequent example application of this general rule is showing that the Levi-Civita connection, which is a mapping of smooth vector fields (X,Y) mapsto abla_{X} Y taking a pair of vector fields to a vector field, does not define a tensor field on "M". This is because it is only "R"-linear in "Y" (in place of full "C"("M")-linearity, it satisfies the "Leibniz rule," abla_{X}(fY) = (Xf) Y +f abla_X Y)). Nevertheless it must be stressed that even though it is not a tensor field, it still qualifies as a geometric object with a component-free interpretation.

Applications

The curvature tensor is discussed in differential geometry and the stress-energy tensor is important in physics and engineering. Both of these are related by Einstein's theory of general relativity. In engineering, the underlying manifold will often be Euclidean 3-space.

It is worth noting that differential forms, used in defining integration on manifolds, are a type of tensor field.

Tensor calculus

In theoretical physics and other fields, differential equations posed in terms of tensor fields provide a very general way to express relationships that are both geometric in nature (guaranteed by the tensor nature) and conventionally linked to differential calculus. Even to formulate such equations requires a fresh notion, the covariant derivative. This handles the formulation of variation of a tensor field "along" a vector field. The original "absolute differential calculus" notion, which was later called "tensor calculus", led to the isolation of the geometric concept of connection.

Twisting by a line bundle

An extension of the tensor field idea incorporates an extra line bundle "L" on "M". If "W" is the tensor product bundle of "V" with "L", then "W" is a bundle of vector spaces of just the same dimension as "V". This allows one to define the concept of tensor density, a 'twisted' type of tensor field. A "tensor density" is the special case where "L" is the bundle of "densities on a manifold", namely the determinant bundle of the cotangent bundle. (To be strictly accurate, one should also apply the absolute value to the transition functions — this makes little difference for an orientable manifold.) For a more traditional explanation see the tensor density article.

One feature of the bundle of densities (again assuming orientability) "L" is that "L""s" is well-defined for real number values of "s"; this can be read from the transition functions, which take strictly positive real values. This means for example that we can take a "half-density", the case where "s" = ½. In general we can take sections of "W", the tensor product of "V" with "L""s", and consider tensor density fields with weight "s".

Half-densities are applied in areas such as defining integral operators on manifolds, and geometric quantization.

The flat case

When "M" is a Euclidean space and all the fields are taken to be invariant by translations by the vectors of "M", we get back to a situation where a tensor field is synonymous with a tensor 'sitting at the origin'. This does no great harm, and is often used in applications. As applied to tensor densities, it "does" make a difference. The bundle of densities cannot seriously be defined 'at a point'; and therefore a limitation of the contemporary mathematical treatment of tensors is that tensor densities are defined in a roundabout fashion.

Cocycles and chain rules

As an advanced explanation of the "tensor" concept, one can interpret the chain rule in the multivariable case, as applied to coordinate changes, also as the requirement for self-consistent concepts of tensor giving rise to tensor fields.

Abstractly, we can identify the chain rule as a 1-cocycle. It gives the consistency required to define the tangent bundle in an intrinsic way. The other vector bundles of tensors have comparable cocycles, which come from applying functorial properties of tensor constructions to the chain rule itself; this is why they also are intrinsic (read, 'natural') concepts.

What is usually spoken of as the 'classical' approach to tensors tries to read this backwards — and is therefore a heuristic, "post hoc" approach rather than truly a foundational one. Implicit in defining tensors by how they transform under a coordinate change is the kind of self-consistency the cocycle expresses. The construction of tensor densities is a 'twisting' at the cocycle level. Geometers have not been in any doubt about the "geometric" nature of tensor "quantities"; this kind of descent argument justifies abstractly the whole theory.

ee also

*Jet bundle
*Spinor field


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • tensor field — tenzorinis laukas statusas T sritis fizika atitikmenys: angl. tensor field; tensorial field vok. Tensorfeld, n rus. тензорное поле, n pranc. champ de tenseur, m; champ tenseur, m …   Fizikos terminų žodynas

  • Field — or fields may refer to: * Field (agriculture), an area of land used to cultivate crops for agricultural purposes * Field of study, a branch of knowledge * Playing field, in sports, the area in which the sport is played * Visual field or field of… …   Wikipedia

  • Tensor-vector-scalar gravity — (TeVeS) is a proposed relativistic theory which purports to explain galactic rotation curves without invoking dark matter. Originated by Jacob Bekenstein in 2004, it incorporates various dynamical and non dynamical tensor fields, vector fields… …   Wikipedia

  • Tensor — For other uses, see Tensor (disambiguation). Note that in common usage, the term tensor is also used to refer to a tensor field. Stress, a second order tensor. The tensor s components, in a three dimensional Cartesian coordinate system, form the… …   Wikipedia

  • Tensor contraction — In multilinear algebra, a tensor contraction is an operation on one or more tensors that arises from the natural pairing of a finite dimensional vector space and its dual. In components, it is expressed as a sum of products of scalar components… …   Wikipedia

  • Field (physics) — The magnitude of an electric field surrounding two equally charged (repelling) particles. Brighter areas have a greater magnitude. The direction of the field is not visible …   Wikipedia

  • Tensor (intrinsic definition) — For an introduction to the nature and significance of tensors in a broad context, see Tensor. In mathematics, the modern component free approach to the theory of a tensor views a tensor as an abstract object, expressing some definite type of… …   Wikipedia

  • Tensor product of fields — In abstract algebra, the theory of fields lacks a direct product: the direct product of two fields, considered as a ring is never itself a field. On the other hand it is often required to join two fields K and L, either in cases where K and L are …   Wikipedia

  • Tensor product — In mathematics, the tensor product, denoted by otimes, may be applied in different contexts to vectors, matrices, tensors, vector spaces, algebras, topological vector spaces, and modules. In each case the significance of the symbol is the same:… …   Wikipedia

  • Tensor algebra — In mathematics, the tensor algebra of a vector space V , denoted T ( V ) or T bull;( V ), is the algebra of tensors on V (of any rank) with multiplication being the tensor product. It is the free algebra on V , in the sense of being left adjoint… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”