- Torsion tensor
In
differential geometry , the notion of torsion is a manner of characterizing a twist or screw of amoving frame around a curve. The torsion of a curve, as it appears in theFrenet-Serret formulas , for instance, quantifies the twist of a curve about its tangent vector as the curve evolves (or rather the rotation of the Frenet-Serret frame about the tangent vector.) In the geometry of surfaces, the "geodesic torsion" describes how a surface twists about a curve on the surface. The companion notion ofcurvature measures how moving frames "roll" along a curve "without twisting."More generally, on a
differentiable manifold equipped with anaffine connection (that is, a connection in thetangent bundle ), torsion — together with curvature — form the two fundamental invariants of the connection. In this context, torsion gives an intrinsic characterization of howtangent space s twist about a curve when they areparallel transport ed; whereas curvature describes how the tangent spaces roll along the curve. Torsion may be described concretely as atensor , or as a vector-valuedtwo-form on the manifold. If ∇ is an affine connection on adifferential manifold , then the torsion tensor is defined, in terms of vector fields "X" and "Y", by:where ["X","Y"] is theLie bracket of vector fields .Torsion is particularly useful in the study of the geometry of
geodesic s. Given a system of parametrized geodesics, one can specify a class of affine connections having those geodesics, but differing by their torsions. There is a unique connection which "absorbs the torsion", generalizing theLevi-Civita connection to other, possibly non-metric situations (such asFinsler geometry .) Absorption of torsion also plays a fundamental role in the study ofG-structure s andCartan's equivalence method . Torsion is also useful in the study of unparametrized families of geodesics, via the associatedprojective connection . Inrelativity theory , such ideas have been implemented in the form ofEinstein-Cartan theory .The torsion tensor
Let "M" be a manifold with a connection ∇ on the tangent bundle. The torsion tensor (sometimes called the "Cartan" ("torsion") "tensor") is a vector-valued 2-form defined on
vector field s "X" and "Y" by:
where ["X","Y"] is the Lie bracket of two vector fields. By the Leibniz rule, "T"("fX","Y") = "T"("X","fY") = "fT"("X","Y") for any
smooth function "f". So "T" istensorial , despite being defined in terms of the non-tensorialcovariant derivative : it gives a 2-form on tangent vectors, while the covariant derivative is only defined for vector fields.Curvature and the Bianchi identities
The
curvature tensor of ∇ is a mapping T"M" ∧ T"M" → End(T"M") defined on vector fields "X", "Y", and "Z" by:Note that, for vectors at a point, this definition is independent of how the vectors are extended to vector fields away from the point (thus it defines a tensor, much like the torsion).The Bianchi identities relate the curvature and torsion as follows. [See Kobayashi-Nomizu (1996) Volume 1, Proposition III.5.2.] Let denote the cyclic sum over "X", "Y", and "Z". For instance,:Then the following identities hold
1. Bianchi's first identity: ::
2. Bianchi's second identity:::
Components of the torsion tensor
The components of the torsion tensor in terms of a local basis of sections (e1, ..., en) of the tangent bundle can be derived by setting "X"=ei, "Y"=ej and by introducing the commutator coefficients γkijek := [ei,ej] . The components of the torsion are then
:
If the basis is
holonomic then the Lie brackets vanish, . So . In particular (see below) while the geodesic equations determine the symmetric part of the connection, the torsion tensor determines the antisymmetric part.The torsion form
The torsion form, an alternative characterization of torsion, applies to the
frame bundle F"M" of the manifold "M". Thisprincipal bundle is equipped with a connection form ω, a gl("n")-valued one-form which maps vertical vectors to the generators of the right action in gl("n") and equivariantly intertwines the right action of GL("n") on the tangent bundle of F"M" with theadjoint representation on gl("n"). The frame bundle also carries a canonical one-form θ, with values in Rn, defined at a frame "u" ∈ Fx"M" (regarded as a linear function "u" : Rn → Tx"M") by:where π : F"M" → "M" is the projection mapping for the principal bundle. The torsion form is then:Equivalently, Θ = Dθ, where "D" is theexterior covariant derivative determined by the connection.The torsion form is a (horizontal)
tensorial form with values in Rn, meaning that under the right action of "g" ∈ Gl("n") it transforms equivariantly::where "g" acts on the right-hand side through its fundamental representation on Rn.The curvature form and Bianchi identities
The
curvature form is the gl("n")-valued 2-form:where, again, "D" denotes the exterior covariant derivative. In terms of the curvature form and torsion form, the corresponding Bianchi identities are [Kobayashi-Nomizu (1996) Volume 1, III.2.]
#
#Moreover, one can recover the curvature and torsion tensors from the curvature and torsion forms as follows. At a point "u" of Fx"M", one has [Kobayashi-Nomizu (1996) Volume 1, III.5.] ::where again "u" : Rn → Tx"M" is the function specifying the frame in the fibre, and the choice of lift of the vectors via π-1 is irrelevant since the curvature and torsion forms are horizontal (they vanish on the ambiguous vertical vectors).
Torsion form in a frame
The torsion form may be expressed in terms of a
connection form on the base manifold "M", written in a particular frame of the tangent bundle (e1,...,en). The connection form expresses the exterior covariant derivative of these basic sections::Thesolder form for the tangent bundle (relative to this frame) is thedual basis θi ∈ T*"M" of the ei, so that θi(ej) = δij (theKronecker delta .) Then the torsion 2-form has components:In the rightmost expression,:are the frame-components of the torsion tensor, as given in the previous definition.
It can be easily shown that Θi transforms tensorially in the sense that if a different frame:for some invertible matrix-valued function ("g"ij), then:In other terms, Θ is a tensor of type (1,2) (carrying one contravariant and two covariant indices).
Alternatively, the solder form can be characterized in a frame-independent fashion as the T"M"-valued one-form θ on "M" corresponding to the identity endomorphism of the tangent bundle under the duality isomorphism End(T"M") ≈ T"M" ⊗ T*"M". Then the torsion two-form is a section of:given by:where "D" is the
exterior covariant derivative . (Seeconnection form for further details.)Irreducible decomposition
The torsion tensor can be decomposed into two irreducible parts: a
trace-free part and another part which contains the trace terms. Using theindex notation , the trace of "T" is given by:and the trace-free part is:where δij is theKronecker delta .Intrinsically, one has:The trace of "T", tr "T", is an element of T*"M" defined as follows. For each vector fixed "X" ∈ T"M", "T" defines an element "T"("X") of Hom(T"M", T"M") via:Then (tr "T")("X") is defined as the trace of this endomorphism. That is,:
The trace-free part of "T" is then:where ι denotes the
interior product .As a consequence of the Bianchi identity, the one-form tr T is a closed one-form:
:
where "d" is the
exterior derivative .Characterizations and interpretations
Throughout this section, "M" is assumed to be a
differentiable manifold , and ∇ acovariant derivative on thetangent bundle of "M" unless otherwise noted.Affine developments
Suppose that "x"t is a curve in "M". The affine development of "x"t is the unique curve "C"t in Tx0"M" such that:where :is the
parallel transport associated to ∇.In particular, if "x"t is a
closed loop , then "C"t may or may not also be closed depending on the torsion of the connection. Thus the torsion is interpreted as ascrew dislocation of the development of a curve. In this way, the torsion is associated with a translational component to theholonomy of the connection. The companion notion of curvature represents an infinitesimal linear transformation (or a rotation in the case of aRiemannian connection .)Twisting of reference frames
In the classical
differential geometry of curves , theFrenet-Serret formulas describe how a particular moving frame (the Frenet-Serret frame) "twists" along a curve. In physical terms, the torsion corresponds to theangular momentum of an idealizedtop pointing along the tangent of the curve.The case of a manifold with a (metric) connection admits an analogous interpretation. Suppose that an observer is moving along a geodesic for the connection. Such an observer is ordinarily thought of as inertial since she experiences no
acceleration . Suppose that in addition the observer carries with herself a system of rigid straight measuring rods (acoordinate system ). Each rod is a straight segment; ageodesic . Assume that each rod isparallel transport ed along the trajectory. The fact that these rods are physically "carried" along the trajectory means that they are "Lie-dragged", or propagated so that theLie derivative of the each rod along the tangent vanishes. They may, however, experience torque (or torsional forces) analogous to the torque felt by the top in the Frenet-Serret frame. This force is measured by the torsion.More precisely, suppose that the observer moves along a geodesic path γ("t") and carries a measuring rod along it. The rod sweeps out a surface as the observer travels along the path. There are natural coordinates ("t","x") along this surface, where "t" is the parameter time taken by the observer, and "x" is the position along the measuring rod. The condition that the tangent of the rod should be parallel translated along the curve is
:
Consequently, the torsion is given by
:
If this is not zero, then the marked points on the rod (the "x" = constant curves) will trace out helices instead of geodesics. They will tend to rotate around the observer.
This interpretation of torsion plays a role in the theory of
teleparallelism , also known asEinstein-Cartan theory , an alternative formulation ofrelativity theory .The torsion of a filament
In
materials science , and especiallyelasticity theory , ideas of torsion also play an important role. One problem [Goriely "et al" (2006).] models the growth of vines, focusing on the question of how vines manage to twist around objects. The vine itself is modeled as a pair of elastic filaments twisted around one another. In its energy-minimizing state, the vine naturally grows in the shape of a helix. But the vine may also be stretched out to maximize its extent (or length). In this case, the torsion of the vine is related to the torsion of the pair of filaments (or equivalently the surface torsion of the ribbon connecting the filaments), and it reflects the difference between the length-maximizing (geodesic) configuration of the vine and its energy-minimizing configuration.Torsion and vorticity
In
fluid dynamics , torsion is naturally associated tovortex line s.Geodesics and the absorption of torsion
Suppose that γ("t") is a curve on "M". Then γ is an affinely parametrized geodesic provided that:for all time "t" in the domain of γ. (Here the dot denotes differentiation with respect to "t", which associates with γ the tangent vector pointing along it.) Each geodesic is uniquely determined by its initial tangent vector at time "t"=0, .
One application of the torsion of a connection involves the
geodesic spray of the connection: roughly the family of all affinely parametrized geodesics. Torsion is the ambiguity of classifying connections in terms of their geodesic sprays:
* Two connections ∇ and ∇′ which have the same affinely parametrized geodesics (i.e., the same geodesic spray) differ only by torsion. [See Spivak (1999) Volume II, Addendum 1 to Chapter 6. See also Bishop and Goldberg (1980), section 5.10.] More precisely, if "X" and "Y" are a pair of tangent vectors at "p" ∈ "M", then let:be the difference of the two connections, calculated in terms of arbitrary extensions of "X" and "Y" away from "p". By the Leibniz product rule, one sees that Δ does not actually depend on how "X" and "Y"' are extended (so it defines a tensor on "M"). Let "S" and "A" be the symmmetric and alternating parts of Δ:::Then
* is the difference of the torsion tensors.
* ∇ and ∇′ define the same families of affinely parametrized geodesics if and only if "S"("X","Y") = 0.In other words, the symmetric part of the difference of two connections determines whether they have the same parametrized geodesics, whereas the skew part of the difference is determined by the relative torsions of the two connections. Another consequence is:
* Given any affine connection ∇, there is a unique torsion-free connection ∇′ with the same family of affinely parametrized geodesics.This is a generalization of thefundamental theorem of Riemannian geometry to general affine (possibly non-metric) connections. Picking out the unique connection subordinate to a family of parametrized geodesics is known as absorption of torsion, and it is one of the stages ofCartan's equivalence method .ee also
*
Curvature tensor
*Contortion tensor
*Levi-Civita connection
*Torsion of curves Notes
References
*
*cite journal | first = Elie | last = Cartan | url=http://www.numdam.org/item?id=ASENS_1923_3_40__325_0|title=Sur les variétés à connexion affine, et la théorie de la relativité généralisée (première partie)| journal = Annales Scientifiques de l'École Normale Supérieure| volume = 40 | year = 1923 | pages = 325–412
*cite journal | first = Elie | last = Cartan | title = Sur les variétés à connexion affine, et la théorie de la relativité généralisée (première partie) (Suite)|url=http://www.numdam.org/item?id=ASENS_1924_3_41__1_0 | journal = Annales Scientifiques de l'École Normale Supérieure| volume = 41 | year = 1924 | pages = 1-25
*
*
*
*citation|last=Spivak|first=Michael|authorlink=Michael Spivak|title=A comprehensive introduction to differential geometry, Volume II | location=Houston, Texas | publisher=Publish or Perish | year=1999 |id=ISBN 0914098713
Wikimedia Foundation. 2010.