Radium

Radium

Radium (pronEng|ˈreɪdiəm) is a radioactive chemical element which has the symbol Ra and atomic number 88. Its appearance is almost pure white, but it readily oxidizes on exposure to air, turning black. Radium is an alkaline earth metal that is found in trace amounts in uranium ores. It is extremely radioactive. Its most stable isotope, SimpleNuclide|Radium|226, has a half-life of 1602 years and decays into radon gas.

Characteristics

The heaviest of the alkaline earth metals, radium is intensely radioactive and resembles barium in its chemical behavior. This metal is found in tiny quantities in the uranium ore pitchblende, and various other uranium minerals. Radium preparations are remarkable for maintaining themselves at a higher temperature than their surroundings, and for their radiations, which are of three kinds: alpha particles, beta particles, and gamma rays. Radium also produces neutrons when mixed with beryllium.

When freshly prepared, pure radium metal is brilliant white, but blackens when exposed to air (probably due to nitride formation). Radium is luminescent (giving a faint blue color), reacts violently with water and oil to form radium hydroxide and is slightly more volatile than barium. The normal phase of radium is a solid.

Applications

Some of the few practical uses of radium are derived from its radioactive properties. More recently discovered radioisotopes, such as SimpleNuclide|link|Cobalt|60 and SimpleNuclide|link|Caesium|137, are replacing radium in even these limited uses because several of these isotopes are more powerful emitters, safer to handle, and available in more concentrated form.

When mixed with beryllium it is a neutron source for physics experiments.

Historical uses

Radium was formerly used in self-luminous paints for watches, nuclear panels, aircraft switches, clocks, and instrument dials. More than 100 former watch dial painters who used their lips to shape the paintbrush died from the radiation from the radium that had become stored in their bones. Soon afterward, the adverse effects of radioactivity became widely known. Radium was still used in dials as late as the 1950s. Although tritium's beta radiation is potentially dangerous if ingested, it has replaced radium in these applications.

During the 1930s it was found that workers' exposure to radium by handling luminescent paints caused serious health effects which included sores, anemia and bone cancer. This use of radium was stopped soon afterward. This is because radium is treated as calcium by the body, and deposited in the bones, where radioactivity degrades marrow and can mutate bone cells. The litigation and ultimate deaths of five "Radium Girl" employees who had used radium-based luminous paints on the dials of watches and clocks had a significant impact on the formulation of occupational disease labor law. [ [http://www.radford.edu/~wkovarik/envhist/radium.html Mass Media & Environmental Conflict - Radium Girls ] ]

Radium was also put in some foods for taste and as a preservative, but also exposed many people to radiation. Radium was once an additive in products like toothpaste, hair creams, and even food items due to its supposed curative powers. Such products soon fell out of vogue and were prohibited by authorities in many countries, after it was discovered they could have serious adverse health effects. (See for instance "Radithor".) Spas featuring radium-rich water are still occasionally touted as beneficial, such as those in Misasa, Tottori, Japan.

Radium (usually in the form of radium chloride) is used in medicine to produce radon gas which in turn is used as a cancer treatment.Fact|date=September 2008 The isotope SimpleNuclide|Radium|223 is currently under investigation for use in medicine as cancer treatment of bone metastasis.

History

Radium (Latin "radius", ray) was discovered by Marie Skłodowska-Curie and her husband Pierre in 1898 in pitchblende from North Bohemia, in the Czech Republic (area around Jáchymov). While studying pitchblende the Curies removed uranium from it and found that the remaining material was still radioactive. They then separated out a radioactive mixture consisting mostly of barium which gave a brilliant green flame color and crimson carmine spectral lines which had never been documented before. The Curies announced their discovery to the French Academy of Sciences on 26 December 1898.

In 1902, radium was isolated as a pure metal by Curie and André-Louis Debierne through the electrolysis of a pure radium chloride solution by using a mercury cathode and distilling in an atmosphere of hydrogen gas.

Historically the decay products of radium were known as radium A, B, C, etc. These are now known to be isotopes of other elements as follows:

On February 4, 1936 radium E became the first radioactive element to be made synthetically. [cite journal | journal=Phys Rev | volume=50 | issue=5 | pages=425-434 | date=1936 | author=J. J. Livingood | title=Deuteron-Induced Radioactivities | doi = 10.1103/PhysRev.50.425 ]

One unit for radioactivity, the non-SI curie, is based on the radioactivity of 226Ra (see Radioactivity).

Occurrence

Radium is a decay product of uranium and is therefore found in all uranium-bearing ores. (One metric ton of pitchblende yields 0.0001 grams of radium). Radium was originally acquired from pitchblende ore from Joachimsthal, Bohemia, in the Czech Republic. Carnotite sands in Colorado provide some of the element, but richer ores are found in the Democratic Republic of the Congo and the Great Lakes area of Canada, and can also be extracted from uranium processing waste. Large radium-containing uranium deposits are located in Canada (Ontario), the United States (New Mexico, Utah, and Virginia), Australia, and in other places.

Compounds

Its compounds color flames crimson carmine (rich red or crimson color with a shade of purple) and give a characteristic spectrum. Due to its geologically short half life and intense radioactivity, radium compounds are quite rare, occurring almost exclusively in uranium ores.
*radium fluoride (RaF2)
*radium chloride (RaCl2)
*radium bromide (RaBr2)
*radium iodide (RaI2)
*radium oxide (RaO)
*radium nitride (Ra3N2)

"See also ."

Isotopes

Radium (Ra) has 25 different known isotopes, four of which are found in nature, with 226Ra being the most common. 223Ra, 224Ra, 226Ra and 228Ra are all generated naturally in the decay of either Uranium (U) or Thorium (Th). 226Ra is a product of 238U decay, and is the longest-lived isotope of radium with a half-life of 1602 years; next longest is 228Ra, a product of 232Th breakdown, with a half-life of 6.7 years.

Radioactivity

Radium is over one million times more radioactive than the same mass of uranium. Its decay occurs in at least seven stages; the successive main products have been studied and were called radium emanation or exradio (now identified as radon), radium A (polonium), radium B (lead), radium C (bismuth), etc. Radon is a heavy gas and the later products are solids. These products are themselves radioactive elements, each with an atomic weight a little lower than its predecessor.

Radium loses about 1% of its activity in 25 years, being transformed into elements of lower atomic weight with lead being the final product of disintegration.

The SI unit of radioactivity is the becquerel (Bq), equal to one disintegration per second. The curie is a non-SI unit defined as that amount of radioactivity which has the same disintegration rate as 1 gram of Ra-226 (3.7 x 1010 disintegrations per second, or 37 GBq).

afety

Handling of radium has been blamed for Marie Curie's premature death.
*Radium is highly radioactive and its decay product, radon gas, is also radioactive. Since radium is chemically similar to calcium, it has the potential to cause great harm by replacing it in bones. Inhalation, injection, ingestion or body exposure to radium can cause cancer and other disorders. Stored radium should be ventilated to prevent accumulation of radon.

*Emitted energy from the decay of radium ionizes gases, affects photographic plates, causes sores on the skin, and produces many other detrimental effects.

Further reading

* Scientific American ("Macklis RM, The great radium scandal. Sci.Am. 1993 Aug: 269(2):94-99")
* Clark, Claudia. (1987). "Radium Girls: Women and Industrial Health Reform, 1910-1935". University of North Carolina Press. ISBN 0-8078-4640-6.
* Ken Silverstein, "Harper's Magazine", November 1998; The radioactive boy scout: when a teenager attempts to build a breeder reactor - case of David Hahn who managed to secure materials and equipment from businesses and information from government officials to develop an atomic energy radiation project for his Boy Scout merit-badge.
* Decay chains (with some examples including Radium)
*Radium Girls

References

*
*
*
*

External links

* [http://www.webelements.com/webelements/elements/text/Ra/index.html WebElements.com - Radium] (also used as a reference)
* [http://www.lateralscience.co.uk/radium/RaDisc.html Lateral Science - Radium Discovery]
* [http://www.markwshead.com/stuffHappens/radium.html Photos of Radium Water Bath in Oklahoma]
* [http://toxnet.nlm.nih.gov/cgi-bin/sis/search/r?dbs+hsdb:@term+@na+@rel+radium,+radioactive NLM Hazardous Substances Databank – Radium, Radioactive]


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • RADIUM — En 1898, quelques mois après avoir découvert le polonium, Pierre et Marie Curie et leur collaborateur Gustave Bémont, poursuivant l’étude du fractionnement de la pechblende de Joachimsthal (aujourd’hui Jáchymov, en République tchèque), purent… …   Encyclopédie Universelle

  • Radium — Ra di*um (r[=a] d[i^]*[u^]m), n. [NL., fr. L. radius ray.] (Chem.) An intensely radioactive metallic element found (combined) in minute quantities in pitchblende, and various other uranium minerals. Symbol, Ra; atomic weight, 226.4. Radium was… …   The Collaborative International Dictionary of English

  • Radium [1] — Radium, ein von dem Ehepaar Curie zuerst isoliertes Element, das mit Baryum große Aehnlichkeit zeigt. Durch Bestimmung des Chlorsilbers, das aus dem bei 100° getrockneten Radiumchlorid erhalten werden konnte, und unter der Annahme der Formel… …   Lexikon der gesamten Technik

  • Radium — Sn (radioaktives Erdalkalimetall) per. Wortschatz fach. (20. Jh.) Neoklassische Bildung. Entdeckt und bezeichnet von den französischen Physikern M. und P. Curie. Zu l. radius Strahl als das Strahlende .    Ebenso nndl. radium, ne. radium, nfrz.… …   Etymologisches Wörterbuch der deutschen sprache

  • Radium [2] — Radium. – Die Lehre von der atomaren Struktur der Elektrizität, die Elektronentheorie, und die aus ihr sich ergebende Definition der »korpuskularen Strahlungen« ebneten den Weg zu einem besseren, umfassenderen Verständnis der… …   Lexikon der gesamten Technik

  • Radium — Студийный альбом Ruoska Дата выпуска 22 марта 2005 Жанр Industrial metal Neue Deutsche Härte Лейбл Kråklund Records П …   Википедия

  • Radium — Radium, KS U.S. city in Kansas Population (2000): 40 Housing Units (2000): 19 Land area (2000): 0.041442 sq. miles (0.107335 sq. km) Water area (2000): 0.000000 sq. miles (0.000000 sq. km) Total area (2000): 0.041442 sq. miles (0.107335 sq. km)… …   StarDict's U.S. Gazetteer Places

  • Radium, KS — U.S. city in Kansas Population (2000): 40 Housing Units (2000): 19 Land area (2000): 0.041442 sq. miles (0.107335 sq. km) Water area (2000): 0.000000 sq. miles (0.000000 sq. km) Total area (2000): 0.041442 sq. miles (0.107335 sq. km) FIPS code:… …   StarDict's U.S. Gazetteer Places

  • Radĭum — Ra, chemisches Element, ist bisher nur als Begleiter des Urans in Mineralien aufgefunden worden, und zwar scheint der Gehalt der Gesteine an R. direkt von ihrem Urangehalt abhängig zu sein. Wahrscheinlich ist R. spurenweise überall in der festen… …   Meyers Großes Konversations-Lexikon

  • radium — RÁDIUM s.n. v. radiu. Trimis de LauraGellner, 13.09.2007. Sursa: DEX 98  RÁDIUM s.n. v. radiu. Trimis de LauraGellner, 13.09.2007. Sursa: DN …   Dicționar Român

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”