- Nanosat-1B
-
Nanosat-1B
A technician is checking a satellite (27 Mar 2009)Operator Instituto Nacional de Técnica Aeroespacial de España Major contractors Universidad de Sevilla
Universidad Politécnica de Cataluña
AD Telecom
ISC Kosmotras
Universidad Complutense de MadridBus Nanosat-01 Mission type transmissions Satellite of Earth Launch date 2009-07-29 18:46 GMT Launch vehicle Dnepr-1 (15A18) Launch site Baikonur Cosmodrome Rampa 95 Área 109 Mission duration 2 years, 3 months and 16 days elapsed. COSPAR ID 2009-041E Mass 22 kg Dimensions 50 cm Orbital elements Regime Polar Semimajor axis 7,009.8 km Eccentricity 0.0063 Inclination 98.1° Apoapsis 683.3 km Periapsis 594.2 km Orbital period 97.3 min The Nanosat-1B Spanish satellite, designed, developed and operated by the Instituto Nacional de Técnica Aeroespacial (National Institute of Aerospace Technology), INTA, is a nano-satellite which weighs 22 kg. Its main mission is the communication between remote sites like the Antarctic, the Hespérides warship and Spain. The Nanosat-1B has fourteen sides, all of them covered by solar panels but the bottom one where the following antennas are installed: a medium gain UHF four wire antenna and two patch antennas. On the top side there are four UHF monopoles. The solar sensors and the Vectorsol experiment are located in the middle tray, being all the other equipment and experiments located inside the satellite.
The Nanosat-1B covers all the earth due to his polar orbit and it stores scientific data which are unloaded when the satellite passes the Control Centre vertical (located at INTA, Torrejón, Madrid) and the mobile stations (Nano-Terminals).
This satellite was launched on 29Th of July 2009 at 18:46 h. UTC from de “Cosmodromo” in Baikonur (Kazajistan), launch pad 95 area 109, by a Dnepr-1 rocket along with other five satellites : the DubaiSat-1 (this one being the main load), Deimos-1, UK-DMC 2, Aprizesat-3 and Aprizesat-4.
NANOSAT-1B Payload
Three Experiments:
- The Two Towers (LDT). This is a high energy proton detector, which will help to characterize the special environment within a certain radiation range.
- RAD FET. This is composed of two sensors, one for accumulated radiation doses and a magneto-impedance sensor. Both LDT and RAD-FET have been entirely developed at INTA.
- Vectorsol. This is a last generation solar sensor which allows to position the satellite. It has been developed by the Universidad de Sevilla along with the Universidad Politécnica de Cataluña and it has been submitted to flight qualification testing at INTA.
Two Communication Systems:
- S Band Transmitter-Receiver: To be tested in orbit, it has been especially designed to be on board the new nano and microsatellites. It offers a very good performance at a very low cost. It is based on the latest FPGA technologies. It has been designed by AD Telecom, but developed and qualified at INTA.
- Medium gain UHF antenna. This four wire antenna along with the four monopoles developed by INTA will allow communications with mobile stations (Nano-Terminals) to be performed.
Future approach
Besides their weight and size characteristics, the Nano-satellites are a new concept of design for space system and a great opportunity to reach space at lower development cost and time. The Nanosat Program foresees several new launches with precise applications, as these platforms are particularly suitable for in orbit demonstration missions including instruments, components and supporting technologies for bigger Space Programs.
References
- Nanosat 01 Gunter's Space Page.
- Nanosat en Orbita Official document of INTA.(Spanish)
- Programa Nanosat Official document of INTA.(Spanish)
- NASA Details of the designation, NASA.
- Real time satellite tracking Tracking real-time satellite.
- MPDI Small magnetic sensor for space applications
- MPDI Small Fluxgate Magnetometers: Development and FutureTrends in Spain
← 2008 · Orbital launches in 2009 · 2010 → USA-202 | Ibuki · SDS-1 · Sohla-1 · Raijin · Kagayaki · Hitomi · Kukai · Kiseki | Koronas-Foton | Omid | NOAA-19 | Progress M-66 | Ekspress-AM44 · Ekspress-MD1 | Hot Bird 10 · NSS-9 · Spirale-A · Spirale-B | OCO | Telstar 11N | Raduga-1 | Kepler | STS-119 (ITS S6) | GOCE | USA-203 | Soyuz TMA-14 | Eutelsat W2A | USA-204 | Kwangmyŏngsŏng-2 | Compass-G2 | RISAT-2 · ANUSAT | Sicral-1B | Yaogan 6 | Kosmos 2450 | USA-205 | Progress M-02M | STS-125 | Herschel · Planck | ProtoStar II | TacSat-3 · PharmaSat · AeroCube 3 · HawkSat I · CP-6 | Meridian 2 | Soyuz TMA-15 | LRO · LCROSS | MEASAT-3a | GOES 14 | Sirius FM-5 | TerreStar-1 | Kosmos 2451 · Kosmos 2452 · Kosmos 2453 | RazakSAT | STS-127 (JEM-EF · AggieSat 2 · BEVO-1 · Castor · Pollux) | Kosmos 2454 · Sterkh-1 | Progress M-67 | DubaiSat-1 · Deimos-1 · UK-DMC 2 · Nanosat 1B · AprizeSat-3 · AprizeSat-4 | AsiaSat 5 | USA-206 | JCSAT-RA · Optus D3 | STSAT-2A | STS-128 (Leonardo MPLM) | Palapa-D | USA-207 | HTV-1 | Meteor M-1 · Universitetsky-Tatyana-2 · Sterkh-2 · UGATUSAT · BLITS · SumbandilaSat · IRIS | Nimiq 5 | Oceansat-2 · BeeSat-1 · UWE-2 · ITU-pSat1 · SwissCube-1 · Rubin 9.1 · Rubin 9.2 | USA-208 · USA-209 | Soyuz TMA-16 | Amazonas-2 · COMSATBw-1 | WorldView-2 | Progress M-03M | USA-210 | Thor-6 · NSS-12 | SMOS · Proba-2 | Progress M-MIM2 (Poisk) | Shijian XI-01 | STS-129 (ExPRESS-1 · ExPRESS-2) | Kosmos 2455 | Intelsat 14 | Eutelsat W7 | IGS Optical 3 | Intelsat 15 | USA-211 | Yaogan 7 | Kosmos 2456 · Kosmos 2457 · Kosmos 2458 | Yaogan 8 · Xi Wang 1 | Helios IIB | Soyuz TMA-17 | DirecTV-12Payloads are separated by bullets ( · ), launches by pipes ( | ). Manned flights are indicated in bold text. Uncatalogued launch failures are listed in italics. Payloads deployed from other spacecraft are denoted in brackets. Categories:
Wikimedia Foundation. 2010.