Dislocation creep

Dislocation creep

Dislocation creep is a deformation mechanism in crystalline materials. Dislocation creep involves the movement of dislocations through the crystal lattice of the material. It causes plastic deformation of the individual crystals and in the end the material itself.

Dislocation creep is highly sensitive to the differential stress on the material. At relatively low temperatures it is the dominant deformation mechanism in most crystalline materials.[1]

Contents

Principles

Schematic representation of an edge dislocation in a crystal lattice. The yellow plane is the glide plane, the vector u represents the dislocation, b is the Burgers vector. When the dislocation moves from left to right through the crystal, the lower half of the crystal has moved one Burgers vector length to the left, relative to the upper half.
Schematic representation of a screw dislocation in a crystal lattice. The yellow plane (Σ) is again the glide plane, u the dislocation and b the Burgers vector. When the dislocation moves from the back to the front of the crystal, the lower half moves one Burgers vector length to the front, relative to the upper half.

Dislocations and glide planes in crystals

Dislocation creep takes place due to the movement of dislocations through a crystal lattice. Each time a dislocation moves through a crystal, part of the crystal moves one lattice point along a plane, relative to the rest of the crystal. The plane that separates both parts and along which the movement takes place is called a glide plane. To allow the movement, all ionic bonds along the plane have to be broken. If all bonds were broken at once, this would require so much energy that dislocation creep would only in theory be possible. When it is assumed that the movement takes place step by step, the breaking of bonds is immediately followed by the creation of new ones and the energy required is much lower. Calculations of molecular dynamics and analysis of deformed materials have shown that deformation creep can be an important factor in deformation processes, under certain circumstances.

By moving a dislocation step by step through a crystal lattice a linear lattice defect is created between parts of the crystal lattice, which is called a dislocation.[2] Two types of dislocations exist. Edge dislocations form the edge of an extra layer of atoms inside the crystal lattice. Screw dislocations form a line along which the crystal lattice jumps one lattice point. In both cases the dislocation line forms a linear defect through the crystal lattice, the crystal can be perfect on all sides of the line.

Edge dislocation move in a direction perpendicular to the dislocation line, screw dislocations move parallel to the dislocation line. In both cases this causes a part of the crystal to move relative to other parts. Meanwhile the dislocation itself moves further on along a glide plane. The crystal system of the material (mineral or metal) determines how many glide planes are possible, and in which orientations. The orientation of the differential stress then determines which glide planes are active and which are not. The Von Mises criterion states that to deform a material, movement along at least five different glide planes is required. A dislocation will not always be a straight line and can thus move along more than one glide plane. Where the orientation of the dislocation line changes, a srew dislocation can continue as an edge dislocation and vice versa.

The length of the displacement in the crystal caused by the movement of the dislocation is called the Burgers vector. It equals the distance between two atoms or ions in the crystal lattice. Therefore each material has its own characteristic Burgers vectors for each glide plane.

Dislocation movement

A dislocation can ideally move through a crystal until it reaches a grain boundary (the boundary between two crystals). When it reaches a grain boundary, the dislocation will disappear. In that case the whole crystal has sheared a little. There are however different ways in which the movement of a dislocation can be slowed or stopped. When a dislocation moves along several different glide planes, it can have different velocities in these different planes, due to the anisotrope nature of some materials (anisotrope means the material properties are not the same in each direction). Dislocations can also encounter other defects in the crystal on their ways, such as other dislocations or point defects. In such cases a part of the dislocation could slow down or even stop moving altogether.

In alloy design, this effect is used to a great extent. on adding a dissimilar atom or phase, such as a small amount of carbon to iron, it is hardened, meaning deformation of the material will be more difficult (the material becomes stronger). The carbon atoms act as interstitial particles (point defects) in the crystal lattice of the iron, and dislocations will not be able to move as easily as before.

Dislocation recovery

Dislocations are imperfections in a crystal lattice, that from a thermodynamic point of view reduce the amount of free energy in the system. Therefore, parts of a crystal that have more dislocations will be relatively unstable. By recrystallisation the crystal can heal itself. Recovery of the crystal structure can also take place when two dislocations with opposite displacement meet each other.

A dislocation that has been brought to a halt by an obstacle (a point defect) can overcome the obstacle and start moving again by a process called dislocation climb. For dislocation climb to occur, vacancies have to be able to move through the crystal. When a vacancy arrives at the place where the dislocation is stuck it can cause the dislocation to climb out of its glide plane, after which the point defect is no longer in its way. Dislocation climb is therefore dependent from the velocity of vacancy diffusion. As with all diffusion processes, this is highly dependent on the temperature. At higher temperatures dislocations will more easily be able to move around obstacles. For this reason, many hardened materials become exponentially weaker at higher temperatures.

To increase the free energy in the system, dislocations can tend to concentrate themselves in certain zones, so that other regions will stay free of dislocations. This leads to the formation of 'dislocation walls', planes in a crystal where dislocations localise. Edge dislocations form so called tilt walls,[3] while screw dislocations form twist walls. In both cases the increasing localisation of dislocations in the wall will increase the angle between the orientation of the crystal lattice on both sides of the wall. This leads to the formation of subgrains. The process is called subgrain rotation (SGR) and can eventually lead to the formation of new grains when the dislocation wall becomes a new grain boundary.

Origin of dislocations

When a crystalline material is put under differential stress, new dislocations form at the grain boundaries, and begin moving through the crystal.

Another way in which new dislocations can form are so called Frank-Read sources. These form when a dislocation is stopped at two places. The part of the dislocation in between will move along, causing the dislocation line to curve. This curving can continue until the dislocation curves over itself to form a circle. In the centre of such a circle the source will produce a new dislocation, and this process will produce a sequence of dislocations on top of each other. Frank-Read sources are also created when screw dislocations double cross-slip (change glide planes twice), as the jogs in the dislocation line pin the dislocation in the 3rd plane.

See also

Notes:

  1. ^ Twiss & Moores (2000), p. 396
  2. ^ Twiss & Moores (2000), pp. 395-396
  3. ^ Poirier (1976)

Literature:

  • Poirier, J.P.; 1976: Plasticité à haute température des solides cristallins, Eyrolles, Paris.
  • Twiss, R.J. & Moores, E.M., 2000: Structural Geology, W.H. Freeman & co (6th ed.), ISBN 0-7167-2252-6

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать курсовую

Look at other dictionaries:

  • Creep (deformation) — For other uses, see Creep (disambiguation). v · d · e Materials failure modes Buckling …   Wikipedia

  • Dislocation — For the syntactic operation, see Dislocation (syntax). For the medical term, see Joint dislocation. In materials science, a dislocation is a crystallographic defect, or irregularity, within a crystal structure. The presence of dislocations… …   Wikipedia

  • dislocation — a linear crystalline defect around which there is atomic misalignment; plastic deformation corresponds to the motion of dislocations in response to an applied shear stress; edge, screw, and mixed dislocations are possible. The movement of… …   Mechanics glossary

  • Diffusion creep — refers to the deformation of crystalline solids by the diffusion of vacancies through their crystal lattice.[1] Diffusion creep results in plastic deformation rather than brittle failure of the material. Diffusion creep is more sensitive to… …   Wikipedia

  • Deformation mechanism — In structural geology, metallurgy and materials science, deformation mechanisms refer to the various mechanisms at the grain scale that are responsible for accommodating large plastic strains in rocks, metals and other materials. Contents 1… …   Wikipedia

  • Mylonite — An amphibolitic mylonite showing a number of (rotated) porphyroclasts: a clear red garnet left in the picture while smaller white feldspar porphyroclasts can be found all over. Location: the tectonic contact between th …   Wikipedia

  • Dynamic quartz recrystallization — Quartzite from Southern Appalachians. Thin section prepared by Michael Stevens. Quartz is the most abundant single mineral in the earth s crust (behind the feldspar group),[1] and as such is present in a very large proportion of rocks both as… …   Wikipedia

  • Zone de cisaillement — La zone de cisaillement est une surface de discontinuité tectonique très importante affectant l écorce et le manteau supérieur. Elle résulte d une déformation inhomogène concentrant des mouvements relatives dans les zones planaires ou curvilignes …   Wikipédia en Français

  • Shear (geology) — Study of geological shear is related to the study of structural geology, rock microstructure or rock texture and fault mechanics. Shear is the response of a rock to deformation usually by compressive stress and forms particular textures. Shear… …   Wikipedia

  • Viscoplasticity — Figure 1. Elements used in one dimensional models of viscoplastic materials. Viscoplasticity is a theory in continuum mechanics that describes the rate dependent inelastic behavior of solids. Rate dependence in this context means that the… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”