An amphibolitic mylonite showing a number of (rotated) porphyroclasts: a clear red garnet left in the picture while smaller white feldspar porphyroclasts can be found all over. Location: the tectonic contact between the (autochthonous) Western Gneiss Region and rocks of the (allochthonous) Blåhø nappe on Otrøy, Caledonides, Central Norway.
A mylonite (through a petrographic microscope) showing rotated so-called δ-clasts. The clasts show that the shear was dextral in this particular cut. Strona-Cenery zone, Southern Alps, Italy.
Mylonite, Owl Mountains, Poland

Mylonite is a fine-grained, compact rock produced by dynamic recrystallization of the constituent minerals resulting in a reduction of the grain size of the rock. It is classified as a metamorphic rock. Mylonites can have many different mineralogical compositions; it is a classification based on the textural appearance of the rock.



Mylonites are ductilely deformed rocks formed by the accumulation of large shear strain, in ductile fault zones. There are many different views on the formation of mylonites, but it is generally agreed that crystal-plastic deformation must have occurred, and that fracturing and cataclastic flow are secondary processes in the formation of mylonites. Mechanical abrasion of grains by milling does not occur, although this was originally thought to be the process that formed mylonites, which were named from the Greek μύλος mylos, meaning mill.[1]

There are many different mechanisms that accommodate crystal-plastic deformation. In crustal rocks the most important processes are dislocation creep and diffusion creep. Dislocation generation acts to increase the internal energy of crystals. This effect is compensated through grain-boundary-migration recrystallization which reduces the internal energy by increasing the grain boundary area and reducing the grain volume, storing energy at the mineral grain surface. This process tends to organize dislocations into subgrain boundaries. As more dislocations are added to subgrain boundaries, the misorientation across that subgrain boundary will increase until the boundary becomes a high-angle boundary and the subgrain effectively becomes a new grain. This process, sometimes referred to as subgrain rotation recrystallization,[2] acts to reduce the mean grain size. Volume and grain-boundary diffusion, the critical mechanisms in diffusion creep, become important at high temperatures and small grain sizes. Thus some researchers have argued that as mylonites are formed by dislocation creep and dynamic recrystallization, a transition to diffusion creep can occur once the grain size is reduced sufficiently.

Mylonites generally develop in ductile shear zones where high rates of strain are focused. They are the deep crustal counterparts to cataclastic brittle faults that create fault breccias.[3]


  • Blastomylonites are coarse grained, often sugary in appearance without distinct tectonic banding.
  • Ultramylonites have undergone extreme grainsize reduction. They are hard, dark, cherty to flinty in appearance and may be confused with pseudotachylite and obsidian.
  • Phyllonites are phyllosilicate(e.g. chlorite or mica)-rich mylonites. They typically have a well-developed secondary shear (C') fabric.


Determining the displacements that occur in mylonite zones depends on correctly determining the orientations of the finite strain axis and inferring how those orientations change with respect to the incremental strain axis. This is referred to as determining the shear sense. It is common practice to assume that the deformation is plane strain simple shear deformation. This type of strain field assumes that deformation occurs in a tabular zone where displacement is parallel to the shear zone boundary. Furthermore, during deformation the incremental strain axis maintains a 45 degree angle to the shear zone boundary. The finite strain axes are initially parallel to the incremental axis, but rotate away during progressive deformation.

Kinematic indicators are structures in mylonites that allow the sense of shear to be determined. Most kinematic indicators are based on deformation in simple shear and infer sense of rotation of the finite strain axes with respect to the incremental strain axes. Because of the constraints imposed by simple shear, displacement is assumed to occur in the foliation plane in a direction parallel to the mineral stretching lineation. Therefore a plane parallel to the lineation and perpendicular to the foliation is viewed to determine the shear sense.

The most common shear sense indicators are C/S fabrics, asymmetric porphyroclasts, vein and dike arrays, mantled porphyroclasts and mineral fibers. All of these indicators have a monoclinic symmetry which is directly related to the orientations of the finite strain axes. Although structures like asymmetric folds and boudinages are also related to the orientations of the finite strain axes, these structures can form from distinct strain paths and are not reliable kinematic indicators.


Wikimedia Foundation. 2010.

Look at other dictionaries:

  • mylonite — ● mylonite nom féminin Roche ayant subi un broyage tectonique intense et qui est réduite à un grain très fin …   Encyclopédie Universelle

  • Mylonite — La Mylonite est une roche cataclastique obtenue suite au broyage plus ou moins fin d une roche, d origine magmatique ou métamorphique, et de ses éléments, réduits en petits débris anguleux, tordus et étirés au point que les cristaux originels ne… …   Wikipédia en Français

  • mylonite — /muy leuh nuyt , mil euh /, n. Geol. a rock that has been crushed and sheared to such an extent that its original texture has been destroyed. [1885 90; mylon (repr. Gk mýlos mill) + ITE1] * * * …   Universalium

  • mylonite — noun any rock that has undergone modifications due to dynamic recrystallization following plastic flow …   Wiktionary

  • mylonite — n. (Geology) type of rock that has been broken down to the extent that it has lost its texture …   English contemporary dictionary

  • mylonite — my·lo·nite …   English syllables

  • mylonite — /ˈmaɪlənaɪt/ (say muyluhnuyt), /ˈmɪlə / (say miluh ) noun a rock that has been crushed and rolled out to such an extent that the original structure has been destroyed. {Greek mylōn mill + ite1} …   Australian-English dictionary

  • mylonite — ˈmīləˌnīt, ˈmil noun ( s) Etymology: Greek mylōn mill (from mylē mill) + English ite more at meal : a siliceous schist geologically produced by intense crushing of rocks …   Useful english dictionary

  • Mylonit — Übergang von einem Granodiorit (unten) in einen Protomylonit. Die dunklen Kristalle im Granodiorit sind Andesine, die im Protomylonit zu weißem Oligoklas rekristallisiert sind. Orvinfjella, Dronning Maud Land, Antarktika. Mylonit (von gr. μύλη… …   Deutsch Wikipedia

  • Kataklasit — Kataklastische Zone in einem slowakischen Marmor Kataklasite sind Gesteine, deren Mineralaggregate und Gesteinsbestandteile durch mechanische Beanspruchung oder dynamische Rekristallisation verkleinert wurden. Der Vorgang wird als Kataklase… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”