Deformation mechanism

Deformation mechanism

In structural geology, metallurgy and materials science, deformation mechanisms refer to the various mechanisms at the grain scale that are responsible for accommodating large plastic strains in rocks, metals and other materials.



The active deformation mechanism in a material depends on the homologous temperature, confining pressure, strain rate, stress, grain size, presence or absence of a pore fluid, presence or absence of impurities in the material. Note these variables are not fully independent e.g. for a pure material of a fixed grain size, at a given pressure, temperature and stress, the strain-rate is given by the flow-law associated with the particular mechanism(s). More than one mechanism may be active under a given set of conditions and some mechanisms cannot operate independently but must act in conjunction with another in order that significant permanent strain can develop. In a single deformation episode, the dominant mechanism may change with time e.g. recrystallization to a fine grain size at an early stage may allow diffusive mass transfer processes to become dominant.

The recognition of the active mechanism(s) in a material almost always requires the use of microscopic techniques, in most cases using a combination of optical microscopy, SEM and TEM.

Using a combination of experimental deformation to find the flow-laws under particular conditions and from microscopic examination of the samples afterwards it has been possible to represent the conditions under which individual deformation mechanisms dominate for some materials in the form of deformation mechanism maps.

Five main mechanisms are recognized; cataclastic flow, dislocation creep, recrystallization, diffusive mass transfer and grain-boundary sliding.

Cataclastic flow

This is a mechanism that operates under low to moderate homologous temperatures, low confining pressure and relatively high strain rates and involves fracturing, sliding and rolling of fragments.

Dislocation creep

Dislocation glide is the main process but cannot act on its own to produce large strains due to the effects of strain-hardening. Some form of recovery process, such as dislocation climb or grain-boundary migration must also be active.

Dynamic recrystallization

Two main mechanisms of recrystallization are known, sub-grain rotation and grain boundary migration, and only the former involves actual deformation. Grain boundary migration involves no strain in itself, but is one of the recovery mechanisms that can allow dislocation processes to proceed to large strains.

Diffusive mass transfer

In this group of mechanisms, strain is accommodated by a change in shape involving the transfer of mass by diffusion; through the lattice (Nabarro-Herring creep), the grain boundaries (Coble creep) and via a pore fluid (Pressure solution).

  • Nabarro-herring creep acts at high homologous temperatures and is grain size dependent with the strain-rate inversely proportional to the square of the grain size.
  • Coble-creep acts at high homologous temperatures and is strongly grain-size dependent, with a flow-law where strain-rate is inversely proportional to the cube of the grain size .
  • Pressure solution operates at moderate homologous temperatures and relatively low strain-rates and requires the presence of a pore fluid.

Grain-boundary sliding

This mechanism must act with another to change the shapes of the grains so that they can slide past each other without creating significant voids. This mechanism, acting with diffusive mass transfer has been linked with the development of superplasticity.


  • C.W. Passchier & R.A.J. Trouw. Microtectonics. Berlin: Springer. ISBN 3-540-58713-6. 

See also

Deformation mechanism maps

Creep (deformation)

Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • Deformation mechanism map — A deformation mechanism map is a way of representing the dominant deformation mechanism in a material loaded under a given set of conditions and thereby its likely failure mode. Deformation mechanism maps consist of some kind of stress plotted… …   Wikipedia

  • Deformation mechanism maps — A deformation mechanism map is a way of determining the expected failure mode of a material loaded under a given set of conditions. Typical deformation mechanism maps consist of some kind of stress plotted against some kind of temperature axis.… …   Wikipedia

  • Deformation (engineering) — This article is about deformation in engineering. For a more rigorous treatment, see Deformation (mechanics). Compressive stress results in deformation which shortens the object but also expands it outwards. In materials science, deformation is a …   Wikipedia

  • Creep (deformation) — For other uses, see Creep (disambiguation). v · d · e Materials failure modes Buckling …   Wikipedia

  • Isomonodromic deformation — In mathematics, the equations governing the isomonodromic deformation of meromorphic linear systems of ordinary differential equations are, in a fairly precise sense, the most fundamental exact nonlinear differential equations. As a result, their …   Wikipedia

  • Focal mechanism — The focal mechanism of an earthquake describes the inelastic deformation in the source region that generates the seismic waves. In the case of a fault related event it refers to the orientation of the fault plane that slipped and the slip vector… …   Wikipedia

  • Compliant mechanism — In mechanical engineering, compliant mechanisms are flexible mechanisms that transfer an input force or displacement to another point through elastic body deformation. These are usually monolithic (single piece) or jointless structures with… …   Wikipedia

  • Diffusion creep — refers to the deformation of crystalline solids by the diffusion of vacancies through their crystal lattice.[1] Diffusion creep results in plastic deformation rather than brittle failure of the material. Diffusion creep is more sensitive to… …   Wikipedia

  • Clastic dike — Vertical clastic dike, filled with coarse basaltic sand, cuts lighter colored horizontal beds composed of finer grained material. Quarter for scale. A clastic dike is a seam of sedimentary material that fills a crack in and cuts across… …   Wikipedia

  • Dislocation creep — is a deformation mechanism in crystalline materials. Dislocation creep involves the movement of dislocations through the crystal lattice of the material. It causes plastic deformation of the individual crystals and in the end the material itself …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”