Chemical transport model

Chemical transport model

A chemical transport model (CTM) is a type of computer numerical model which typically simulates atmospheric chemistry.

Contents

Chemical transport models and general circulation models

While related general circulation models (GCMs) focus on simulating overall atmospheric dynamics (e.g. fluid and heat flows), a CTM instead focuses on the stocks and flows of one or more chemical species. Similarly, a CTM must solve only the continuity equation for its species of interest, a GCM must solve all the primitive equations for the atmosphere; but a CTM will be expected to accurately represent the entire cycle for the species of interest, including fluxes (e.g. advection), chemical production/loss, and deposition. That being said, the tendency, especially as the cost of computing declines over time, is for GCMs to incorporate CTMs for species of special interest to climate dynamics, especially shorter-lived species such as nitrogen oxides and volatile organic compounds; this allows feedbacks from the CTM to the GCM's radiation calculations, and also allows the meteorological fields forcing the CTM to be updated at higher time resolution than may be practical in studies with offline CTMs.

Types of chemical transport models

CTMs may be classified according to their methodology and their species of interest, as well as more generic characteristics (e.g. dimensionality, degree of resolution).

Methodologies

Jacob (1999)[1] classifies CTMs as Eulerian/"box" or Lagrangian/"puff" models, depending on whether the CTM in question focuses on [1]

  • (Eulerian) "boxes" through which fluxes, and in which chemical production/loss and deposition occur over time
  • (Lagrangian) the production and motion of parcels of air ("puffs") over time

An Eulerian CTM solves its continuity equations using a global/fixed frame of reference, while a Lagrangian CTM uses a local/moving frame of reference.

See also

Examples of Eulerian CTMs

Examples of Lagrangian CTMs

Species of interest

CTMs typically focus on one species, but in order to realistically model its dynamics, the CTM may be forced to account for many related species, such as precursors or tracers. E.g. the MOZART model focuses on ozone, but additionally models over 100 related species (including aerosols) and several hundred reactions.

Examples of ozone CTMs

Notes

  1. ^ a b Jacob, Daniel (1999). Introduction to Atmospheric Chemistry (1st Edition ed.). Princeton University Press. pp. 75–85. ISBN 0-691-00185-5. http://www-as.harvard.edu/people/faculty/djj/book/. 

Wikimedia Foundation. 2010.

Игры ⚽ Поможем решить контрольную работу

Look at other dictionaries:

  • Hydrological transport model — An hydrological transport model is a mathematical model used to simulate river or stream flow and calculate water quality parameters. These models generally came into use in the 1960s and 1970s when demand for numerical forecasting of water… …   Wikipedia

  • Chemical process modeling — Part of Chemical engineering History Concepts Unit operations Unit processes Chemical engineer Chemical process Process integration Unit operation …   Wikipedia

  • Global climate model — AGCM redirects here. For Italian competition regulator, see Autorità Garante della Concorrenza e del Mercato. Climate models are systems of differential equations based on the basic laws of physics, fluid motion, and chemistry. To “run” a model,… …   Wikipedia

  • Climate model — This article is about the theories and mathematics of climate modeling. For computer driven prediction of Earth s climate, see Global climate model. Climate models are systems of differential equations based on the basic laws of physics, fluid… …   Wikipedia

  • Atmospheric model — A 96 hour forecast of 850 mbar geopotential height and temperature from the Global Forecast System An atmospheric model is a mathematical model constructed around the full set of primitive dynamical equations which govern atmospheric motions. It… …   Wikipedia

  • Community Climate System Model — The Community Climate System Model (CCSM) is a coupled Global Climate Model developed by the University Corporation for Atmospheric Research (UCAR) with funding from the National Science Foundation, Department of Energy, and NASA.[1] The coupled… …   Wikipedia

  • Chemical biology — is a scientific discipline spanning the fields of chemistry and biology that involves the application of chemical techniques and tools, often compounds produced through synthetic chemistry, to the study and manipulation of biological systems.… …   Wikipedia

  • MOZART (model) — MOZART (Model for OZone And Related chemical Tracers) is a chemistry transport model (CTM) developed jointly by the (US) National Center for Atmospheric Research (NCAR), the Geophysical Fluid Dynamics Laboratory (GFDL), and the [http://www.mpimet …   Wikipedia

  • NAME (dispersion model) — The NAME atmospheric pollution dispersion model [1][2][3][4] was first developed by the UK s Met Office in 1986 after the nuclear accident at Chernobyl, which demonstrated the need for a method that could predict the spread and deposition of… …   Wikipedia

  • North American Mesoscale Model — The North American Mesoscale Model (NAM), refers to a numerical weather prediction model run by National Centers for Environmental Prediction for short term weather forecasting. Currently, the Weather Research and Forecasting Non hydrostatic… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”