Denormal number

Denormal number

In computer science, denormal numbers or denormalized numbers (now often called subnormal numbers) fill the underflow gap around zero in floating point arithmetic: any non-zero number which is smaller than the smallest normal number is 'sub-normal'.

For example, if the smallest positive 'normal' number is 1×βn (where β is the base of the floating-point system, usually 2 or 10), then any smaller positive numbers that can be represented are denormal.

The significand (or mantissa) of an IEEE number is the part of a floating point number that represents the significant digits. For a positive normalised number it can be represented as m0.m1m2m3...mp-2mp-1 (where m represents a significant digit and p is the precision, and m0 is non-zero). Notice that for a binary radix, the leading binary digit is one. In a denormal number, since the exponent is the least that it can be, zero is the lead significand digit (0.m1m2m3...mp-2mp-1) in order to represent numbers closer to zero than the smallest normal number.

By filling the underflow gap like this, significant digits are lost, but not to the extent as when doing flush to zero on underflow (losing all significant digits all through the underflow gap). Hence the production of a denormal number is sometimes called gradual underflow because it allows a calculation to lose precision slowly when the result is small.

In IEEE 754-2008, denormal numbers are renamed subnormal numbers, and are supported in both binary and decimal formats. In binary interchange formats, subnormal numbers are encoded with a biased exponent of 0, but are interpreted with the value of the smallest allowed exponent, which is one greater (i.e., as if it were encoded as a 1). In decimal interchange formats they require no special encoding because the format supports unnormalized numbers directly.

Floating-point precisions

IEEE 754:
16-bit: Half (binary16)
32-bit: Single (binary32), decimal32
64-bit: Double (binary64), decimal64
128-bit: Quadruple (binary128), decimal128
Other:
Minifloat · Extended precision
Arbitrary precision

Contents

Background

Denormal numbers provide the guarantee that addition and subtraction of floating-point numbers never underflows; two nearby floating-point numbers always have a representable non-zero difference. Without gradual underflow, the subtraction ab can underflow and produce zero even though the values are not equal. This can, in turn, lead to division by zero errors that cannot occur when gradual underflow is used.

Denormal numbers were implemented in the Intel 8087 while the IEEE 754 standard was being written. They were by far the most controversial feature in the K-C-S format proposal that was eventually adopted,[1] but this implementation demonstrated that denormals could be supported in a practical implementation. Some implementations of floating point units do not directly support denormal numbers in hardware, but rather trap to some kind of software support. While this may be transparent to the user, it can result in calculations which produce or consume denormal numbers being much slower than similar calculations on normal numbers.

Performance issues

Some systems handle denormal values in hardware, in the same way as normal values. Others leave the handling of denormal values to system software, only handling normal values and zero in hardware. Handling denormal values in software always leads to a significant decrease in performance. But even when denormal values are entirely computed in hardware, the speed of computation is significantly reduced on most modern processors; in extreme cases, instructions involving denormal operands may run as much as 100 times slower.[2][3]

Some applications need to contain code to avoid denormal numbers, either to maintain accuracy, or in order to avoid the performance penalty in some processors. For instance, in audio processing applications, denormal values usually represent a signal so quiet that it's out of the human hearing range. Because of this, a common measure to avoid denormals on processors where there would be a performance penalty is to cut the signal to zero once it reaches denormal levels or mix in an extremely quiet noise signal.[4] Since the SSE2 processor extension, Intel has provided such a functionality in CPU hardware, which rounds denormalized numbers to zero.[5]

References

Further reading

See also various papers on William Kahan's web site [1] for examples of where denormal numbers help improve the results of calculations.


Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • denormal — adjective Smaller than the smallest normal number but larger than zero, thus serving to fill the underflow gap. Syn: denormalized, subnormal …   Wiktionary

  • Normal number (computing) — Floating point precisions IEEE 754: 16 bit: Half (binary16) 32 bit: Single (binary32), decimal32 64 bit: Double (binary64), decimal64 128 bit: Quadruple (binary128), decimal128 Other: Minifloat · Extended precision Arbitrary precision In… …   Wikipedia

  • IEEE 754-1985 — The IEEE Standard for Binary Floating Point Arithmetic (IEEE 754) is the most widely used standard for floating point computation, and is followed by many CPU and FPU implementations. The standard defines formats for representing floating point… …   Wikipedia

  • NaN — For other uses, see Nan. In computing, NaN (Not a Number) is a value of the numeric data type representing an undefined or unrepresentable value, especially in floating point calculations. Systematic use of NaNs was introduced by the IEEE 754… …   Wikipedia

  • AMD FireStream — The AMD FireStream (previously branded as both ATI FireStream and AMD Stream Processor [ [http://www.amd.com/us en/Corporate/VirtualPressRoom/0,,51 104 543 13744 114146,00.html AMD Press Release] ] ) is a stream processor developed by ATI… …   Wikipedia

  • DEN — may refer to: Denmark Denver, Colorado Den (film) Digital Entertainment Network Denver International Airport s IATA code Stapleton International Airport s former IATA code Union Station (Denver) s Amtrak code Diethylnitrosamine Denormal number… …   Wikipedia

  • Rounding — This article is about numerical rounding. For lip rounding in phonetics, see Labialisation. For other uses, see Rounding (disambiguation). Rounding a numerical value means replacing it by another value that is approximately equal but has a… …   Wikipedia

  • James Anderson (computer scientist) — For other people of the same name, see James Anderson (disambiguation). James Anderson is an academic staff member in the School of Systems Engineering at the University of Reading, England. He is currently teaching compilers, algorithms, and… …   Wikipedia

  • Machine epsilon — In floating point arithmetic, the machine epsilon (also called macheps, machine precision or unit roundoff) is, for a particular floating point unit, the difference between 1 and the smallest exactly representable number greater than one. It… …   Wikipedia

  • Double precision — In computing, double precision is a computer numbering format that occupies two adjacent storage locations in computer memory. A double precision number, sometimes simply called a double, may be defined to be an integer, fixed point, or floating… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”