Normal-form game

Normal-form game

In game theory, normal form is a way of describing a game. Unlike extensive form, normal-form representations are not graphical per se, but rather represent the game by way of a matrix. While this approach can be of greater use in identifying strictly dominated strategies and Nash equilibria, some information is lost as compared to extensive-form representations. The normal-form representation of a game includes all perceptible and conceivable strategies, and their corresponding payoffs, of each player.

In static games of complete, perfect information, a normal-form representation of a game is a specification of players' strategy spaces and payoff functions. A strategy space for a player is the set of all strategies available to that player, where a strategy is a complete plan of action for every stage of the game, regardless of whether that stage actually arises in play. A payoff function for a player is a mapping from the cross-product of players' strategy spaces to that player's set of payoffs (normally the set of real numbers, where the number represents a cardinal or ordinal utility—often cardinal in the normal-form representation) of a player, i.e. the payoff function of a player takes as its input a strategy profile (that is a specification of strategies for every player) and yields a representation of payoff as its output.

Contents

An example

A normal-form game
Player 1 \ Player 2 Player 2 chooses left Player 2 chooses right
Player 1 chooses top 4, 3 −1, −1
Player 1 chooses bottom 0, 0 3, 4

The matrix to the right is a normal-form representation of a game in which players move simultaneously (or at least do not observe the other player's move before making their own) and receive the payoffs as specified for the combinations of actions played. For example, if player 1 plays top and player 2 plays left, player 1 receives 4 and player 2 receives 3. In each cell, the first number represents the payoff to the row player (in this case player 1), and the second number represents the payoff to the column player (in this case player 2).

Other representations

Often symmetric games (where the payoffs do not depend on which player chooses each action) are represented with only one payoff. This is the payoff for the row player. For example, the payoff matrices on the right and left below represent the same game.

Both players
Stag Hare
Stag 3, 3 0, 2
Hare 2, 0 2, 2
Just row
Stag Hare
Stag 3 0
Hare 2 2

Uses of normal form

Dominated strategies

The Prisoner's Dilemma
Cooperate Defect
Cooperate −1, −1 −5, 0
Defect 0, −5 −2, −2

The payoff matrix facilitates elimination of dominated strategies, and it is usually used to illustrate this concept. For example, in the prisoner's dilemma (to the right), we can see that each prisoner can either "cooperate" or "defect". If exactly one prisoner defects, he gets off easily and the other prisoner is locked up for good. However, if they both defect, they will both be locked up for longer. One can determine that Cooperate is strictly dominated by Defect. One must compare the first numbers in each column, in this case 0 > −1 and −2 > −5. This shows that no matter what the column player chooses, the row player does better by choosing Defect. Similarly, one compares the second payoff in each row; again 0 > −1 and −2 > −5. This shows that no matter what row does, column does better by choosing Defect. This demonstrates the unique Nash equilibrium of this game is (Defect, Defect).

Sequential games in normal form

Both extensive and normal form illustration of a sequential form game with subgame imperfect and perfect Nash equilibriium marked with red and blue respectively.
A sequential game
Left, Left Left, Right Right, Left Right, Right
Top 4, 3 4, 3 −1, −1 −1, −1
Bottom 0, 0 3, 4 0, 0 3, 4

These matrices only represent games in which moves are simultaneous (or, more generally, information is imperfect). The above matrix does not represent the game in which player 1 moves first, observed by player 2, and then player 2 moves, because it does not specify each of player 2's strategies in this case. In order to represent this sequential game we must specify all of player 2's actions, even in contingencies that can never arise in the course of the game. In this game, player 2 has actions, as before, Left and Right. Unlike before he has four strategies, contingent on player 1's actions. The strategies are:

  1. Left if player 1 plays Top and Left otherwise
  2. Left if player 1 plays Top and Right otherwise
  3. Right if player 1 plays Top and Left otherwise
  4. Right if player 1 plays Top and Right otherwise

On the right is the normal-form representation of this game.

General formulation

In order for a game to be in normal form, we are provided with the following data:

  • There is a finite set P of players, which we label {1, 2, ..., m}
  • Each player k in P has a finite number of pure strategies
 S_k = \{1, 2, \ldots, n_k\}.

A pure strategy profile is an association of strategies to players, that is an m-tuple

 \vec{s} = (s_1, s_2, \ldots,s_m)

such that

 s_1 \in S_1, s_2 \in S_2, \ldots, s_m \in S_m


A payoff function is a function

 F: S_1 \times S_2 \times \ldots \times S_m \rightarrow \mathbb{R}.

whose intended interpretation is the award given to a single player at the outcome of the game. Accordingly, to completely specify a game, the payoff function has to be specified for each player in the player set P= {1, 2, ..., m}.

Definition: A game in normal form is a structure

 G=\langle P, \mathbf{S}, \mathbf{F}\rangle

where:

P=\{1,2, \ldots , m\}

is a set of players,

\mathbf{S}=  \{S_1, S_2, \ldots, S_m\}

is an m-tuple of pure strategy sets, one for each player, and

 \mathbf{F} = \{F_1, F_2, \ldots, F_m\}

is an m-tuple of payoff functions.

References

  • D. Fudenberg and J. Tirole, Game Theory, MIT Press, 1991.
  • J. Weibull, Evolutionary Game Theory, MIT Press, 1996
  • J. von Neumann and O. Morgenstern, Theory of games and Economic Behavior, John Wiley Science Editions, 1964. This book was initially published by Princeton University Press in 1944.

External links


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • normal form game — noun Formally, a structure where P = 1,2, ...,m is a set of players, is an m tuple of pure strategy sets, one for each player, and is an m tuple of payoff functions. <! If someone can turn the math to inline math, please do it. See Also:… …   Wiktionary

  • Normal form — may refer to: Normal form (abstract rewriting) Normal form (databases) Normal form (game theory) Normal form (mathematics) In formal language theory: Beta normal form Chomsky normal form Greibach normal form Kuroda normal form Normal form… …   Wikipedia

  • extensive form game — noun Informally, a representation of a game as a tree of decision nodes, with the game beginning at a unique initial node, and flowing through the tree along a path determined by the players until a terminal node is reached, where play ends and… …   Wiktionary

  • Extensive-form game — An extensive form game is a specification of a game in game theory. This form represents the game as a tree. Each node (called a decision node) represents every possible state of play of the game as it is played. Play begins at a unique initial… …   Wikipedia

  • normal form — noun a) Any of various forms of a relational database providing criteria for determining a tables degree of vulnerability to logical inconsistencies and anomalies. b) A matrix that represents the possible outcomes of a game …   Wiktionary

  • Game theory — is a branch of applied mathematics that is used in the social sciences (most notably economics), biology, engineering, political science, computer science (mainly for artificial intelligence), and philosophy. Game theory attempts to… …   Wikipedia

  • game theory — a mathematical theory that deals with strategies for maximizing gains and minimizing losses within prescribed constraints, as the rules of a card game: widely applied in the solution of various decision making problems, as those of military… …   Universalium

  • Glossary of game theory — Game theory is the branch of mathematics in which games are studied: that is, models describing human behaviour. This is a glossary of some terms of the subject. Definitions of a game Notational conventions ; Real numbers : mathbb{R} .; The set… …   Wikipedia

  • Canonical form — Generally, in mathematics, a canonical form (often called normal form or standard form) of an object is a standard way of presenting that object. Canonical form can also mean a differential form that is defined in a natural (canonical) way; see… …   Wikipedia

  • Game localisation — refers to the preparation of video games for other locales. This adaptation to the standards of other countries covers far more than simply translation of language. There are different areas, such as linguistic, cultural, hardware and software,… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”