. Player 2's expected payoff from playing L is::
Player 2's expected payoff from playing the strategy R is:
:
For small values of ε, player 2 maximizes his expected payoff by placing a minimal weight on R. By symmetry, player 1 should place a minimal weight on D if player 2 is playing the mixed strategy . Hence is trembling-hand perfect.
However, similar analysis fails for the strategy profile .
Assume player 1 is playing a mixed strategy . Player 2's expected payoff from playing L is:
:
Player 2's expected payoff from playing the strategy R is:
:
For all positive values of ε, player 2 maximizes his expected payoff by placing a minimal weight on R. Hence is not trembling-hand perfect because player 2 (and, by symmetry, player 1) maximizes his expected payoff by deviating if there is a small chance of error.
Trembling hand perfect equilibria of two-player games
For two-player games, the set of trembling hand perfect equilibria coincides with the set of admissible equilibria, i.e., equilibria consisting of two undominated strategies. In the example above, we see that the imperfect equilibrium <D,R> is not admissible, as L (weakly) dominates R for Player 2.
Trembling hand perfect equilibria of extensive form games
Infobox equilibrium
name=Extensive-form trembling hand perfect equilibrium
subsetof=Subgame perfect equilibrium, Perfect Bayesian equilibrium, Sequential equilibrium
discoverer=Reinhard Selten
usedfor=Extensive form games
There are two possible ways of extending the definition of trembling hand perfection to extensive form games.
* One may interpret the extensive form as being merely a concise description of a normal form game and apply the concepts described above to this normal form game. In the resulting perturbed games, every strategy of the extensive-form game must be played with non-zero probability. This leads to the notion of a normal-form trembling hand perfect equilibrium.
* Alternatively, one may recall that trembles are to be interpreted as modelling mistakes made by the players with some negligible probability when the game is played. Such a mistake would most likely consist of a player making another move than the one intended at some point during play. It would hardly consist of the player choosing another strategy than intended, i.e. a wrong plan for playing the entire game. To capture this, one may define the perturbed game by requiring that every move at every information set is taken with non-zero probability. Limits of equilibria of such perturbed games as the tremble probabilities goes to zero are called extensive-form trembling hand perfect equilibria.
The notions of normal-form and extensive-form trembling hand perfect equilibria are incomparable, i.e., an equilibrium of an extensive-form game may be normal-form trembling hand perfect but not extensive-form trembling hand perfect and vice versa.As an extreme example of this, Jean-François Mertens has given an example of a two-player extensive form game where no extensive-form trembling hand perfect equilibrium is admissible, i.e., the sets of extensive-form and normal-form trembling hand perfect equilibria for this game are disjoint.
An extensive-form trembling hand perfect equilibrium is also a sequential equilibrium. A normal-form trembling hand perfect equilibrium of an extensive form game may be sequential but is not necessarily so. In fact, a normal-form trembling hand perfect equilibrium does not even have to be subgame perfect.
References
* Selten, R. (1975) A reexamination of the perfectness concept for equilibrium points in extensive games. "International Journal of Game Theory" 4:25-55.
* Selten, R. (1983) Evolutionary stability in extensive two-person games. "Math. Soc. Sci." 5:269-363.
* Selten, R. (1988) Evolutionary stability in extensive two-person games - correction and further development. "Math. Soc. Sci." 16:223--266