Data quality

Data quality

Data are of high quality "if they are fit for their intended uses in operations, decision making and planning" (J. M. Juran). Alternatively, the data are deemed of high quality if they correctly represent the real-world construct to which they refer. Furthermore, apart from these definitions, as data volume increases, the question of internal consistency within data becomes paramount, regardless of fitness for use for any external purpose, e.g. a person's age and birth date may conflict within different parts of a database. The first views can often be in disagreement, even about the same set of data used for the same purpose. This article discusses the concept as it related to business data processing, although of course other data have various quality issues as well.

Contents

Definitions

1. Data exhibited by the data in relation to the portrayal of the actual scenario.

2. The state of completeness, validity, consistency, timeliness and accuracy that makes data appropriate for a specific use. Government of British Columbia

3. The totality of features and characteristics of data that bears on their ability to satisfy a given purpose; the sum of the degrees of excellence for factors related to data. Glossary of Quality Assurance Terms

4. Glossary of data quality terms published by IAIDQ

5. Data quality: The processes and technologies involved in ensuring the conformance of data values to business requirements and acceptance criteria

6. Complete, standards based, consistent, accurate and time stamped [http://www.gs1.org/gdsn/dqf GS1

History

Before the rise of the inexpensive server, massive mainframe computers were used to maintain name and address data so that the mail could be properly routed to its destination. The mainframes used business rules to correct common misspellings and typographical errors in name and address data, as well as to track customers who had moved, died, gone to prison, married, divorced, or experienced other life-changing events. Government agencies began to make postal data available to a few service companies to cross-reference customer data with the National Change of Address registry (NCOA). This technology saved large companies millions of dollars compared to manually correcting customer data. Large companies saved on postage, as bills and direct marketing materials made their way to the intended customer more accurately. Initially sold as a service, data quality moved inside the walls of corporations, as low-cost and powerful server technology became available.

Companies with an emphasis on marketing often focus their quality efforts on name and address information, but data quality is recognized as an important property of all types of data. Principles of data quality can be applied to supply chain data, transactional data, and nearly every other category of data found in the enterprise. For example, making supply chain data conform to a certain standard has value to an organization by: 1) avoiding overstocking of similar but slightly different stock; 2) improving the understanding of vendor purchases to negotiate volume discounts; and 3) avoiding logistics costs in stocking and shipping parts across a large organization.

While name and address data has a clear standard as defined by local postal authorities, other types of data have few recognized standards. There is a movement in the industry today to standardize certain non-address data. The non-profit group GS1 is among the groups spearheading this movement.

For companies with significant research efforts, data quality can include developing protocols for research methods, reducing measurement error, bounds checking of the data, cross tabulation, modeling and outlier detection, verifying data integrity, etc.

Overview

There are a number of theoretical frameworks for understanding data quality. A systems-theoretical approach influenced by American pragmatism expands the definition of data quality to include information quality, and emphasizes the inclusiveness of the fundamental dimensions of accuracy and precision on the basis of the theory of science (Ivanov, 1972). One framework seeks to integrate the product perspective (conformance to specifications) and the service perspective (meeting consumers' expectations) (Kahn et al. 2002). Another framework is based in semiotics to evaluate the quality of the form, meaning and use of the data (Price and Shanks, 2004). One highly theoretical approach analyzes the ontological nature of information systems to define data quality rigorously (Wand and Wang, 1996).

A considerable amount of data quality research involves investigating and describing various categories of desirable attributes (or dimensions) of data. These lists commonly include accuracy, correctness, currency, completeness and relevance. Nearly 200 such terms have been identified and there is little agreement in their nature (are these concepts, goals or criteria?), their definitions or measures (Wang et al., 1993). Software engineers may recognise this as a similar problem to "ilities".

MIT has a Total Data Quality Management program, led by Professor Richard Wang, which produces a large number of publications and hosts a significant international conference in this field (International Conference on Information Quality, ICIQ).

In practice, data quality is a concern for professionals involved with a wide range of information systems, ranging from data warehousing and business intelligence to customer relationship management and supply chain management. One industry study estimated the total cost to the US economy of data quality problems at over US$600 billion per annum (Eckerson, 2002). Incorrect data – which includes invalid and outdated information – can originate from different data sources – through data entry, or data migration and conversion projects.[1]

In 2002, the USPS and PricewaterhouseCoopers released a report stating that 23.6 percent of all U.S. mail sent is incorrectly addressed. [2]

One reason contact data becomes stale very quickly in the average database – more than 45 million Americans change their address every year.[3]

In fact, the problem is such a concern that companies are beginning to set up a data governance team whose sole role in the corporation is to be responsible for data quality. In some organizations, this data governance function has been established as part of a larger Regulatory Compliance function - a recognition of the importance of Data/Information Quality to organizations.

Problems with data quality don't only arise from incorrect data. Inconsistent data is a problem as well. Eliminating data shadow systems and centralizing data in a warehouse is one of the initiatives a company can take to ensure data consistency.

Enterprises, scientists, and researchers are starting to participate within data curation communities to improve the quality of their common data.[4]

The market is going some way to providing data quality assurance. A number of vendors make tools for analysing and repairing poor quality data in situ, service providers can clean the data on a contract basis and consultants can advise on fixing processes or systems to avoid data quality problems in the first place. Most data quality tools offer a series of tools for improving data, which may include some or all of the following:

  1. Data profiling - initially assessing the data to understand its quality challenges
  2. Data standardization - a business rules engine that ensures that data conforms to quality rules
  3. Geocoding - for name and address data. Corrects data to US and Worldwide postal standards
  4. Matching or Linking - a way to compare data so that similar, but slightly different records can be aligned. Matching may use "fuzzy logic" to find duplicates in the data. It often recognizes that 'Bob' and 'Robert' may be the same individual. It might be able to manage 'householding', or finding links between husband and wife at the same address, for example. Finally, it often can build a 'best of breed' record, taking the best components from multiple data sources and building a single super-record.
  5. Monitoring - keeping track of data quality over time and reporting variations in the quality of data. Software can also auto-correct the variations based on pre-defined business rules.
  6. Batch and Real time - Once the data is initially cleansed (batch), companies often want to build the processes into enterprise applications to keep it clean.

There are several well-known authors and self-styled experts, with Larry English perhaps the most popular guru. In addition, the International Association for Information and Data Quality (IAIDQ) was established in 2004 to provide a focal point for professionals and researchers in this field.

ISO 8000 is the international standard for data quality.

See also

References

Further reading

  • Eckerson, W. (2002) "Data Warehousing Special Report: Data quality and the bottom line", Article
  • Ivanov, K. (1972) "Quality-control of information: On the concept of accuracy of information in data banks and in management information systems". The University of Stockholm and The Royal Institute of Technology. Doctoral dissertation.
  • Kahn, B., Strong, D., Wang, R. (2002) "Information Quality Benchmarks: Product and Service Performance," Communications of the ACM, April 2002. pp. 184–192. Article
  • Price, R. and Shanks, G. (2004) A Semiotic Information Quality Framework, Proc. IFIP International Conference on Decision Support Systems (DSS2004): Decision Support in an Uncertain and Complex World, Prato. Article
  • Redman, T. C. (2004) Data: An Unfolding Quality Disaster Article
  • Wand, Y. and Wang, R. (1996) “Anchoring Data Quality Dimensions in Ontological Foundations,” Communications of the ACM, November 1996. pp. 86–95. Article
  • Wang, R., Kon, H. & Madnick, S. (1993), Data Quality Requirements Analysis and Modelling, Ninth International Conference of Data Engineering, Vienna, Austria. Article
  • Fournel Michel, Accroitre la qualité et la valeur des données de vos clients, éditions Publibook, 2007. ISBN 978-2748338478.
  • Daniel F., Casati F., Palpanas T., Chayka O., Cappiello C. (2008) "Enabling Better Decisions through Quality-aware Reports", International Conference on Information Quality (ICIQ), MIT. Article

Wikimedia Foundation. 2010.

Игры ⚽ Нужен реферат?

Look at other dictionaries:

  • Data quality control — is the process of controlling the usage of data with known quality measurement for an application or a process. This process is usually done after a Data quality assurance process, which consists of discovery of data inconsistency and correction …   Wikipedia

  • Data quality assessment — is the process of exposing technical and business data issues in order to plan data cleansing and data enrichment strategies. Technical quality issues are generally easy to discover and correct, such as • Inconsistent standards in structure,… …   Wikipedia

  • Data quality assurance — is the process of profiling the data to discover inconsistencies, and other anomalies in the data and performing data cleansing activities (e.g. removing outliers, missing data interpolation) to improve the data quality . These activities can be… …   Wikipedia

  • Data Quality Management — Le data quality management (en français : gestion de la qualité des données) est une méthode de gestion des informations ayant pour objectif de gérer et de comparer des données entre différents systèmes d information ou bases de données d… …   Wikipédia en Français

  • Data Quality Act — The Data Quality Act (DQA) passed through the United States Congress in Section 515 of the Consolidated Appropriations Act, 2001 (Pub.L. 106 554). Because the Act was a two sentence rider in a spending bill, it had no name given in the actual… …   Wikipedia

  • Data Quality Firewall — A Data Quality Firewall is the use of software to protect a computer system from the entry of erroneous, duplicated or poor quality data. Gartner estimates that poor quality data causes failure in up to 50% of Customer relationship management… …   Wikipedia

  • Data quality management — Le data quality management (en français : gestion de la qualité des données) est une méthode de gestion des informations ayant pour objectif de gérer et de comparer des données entre différents systèmes d information ou bases de données d… …   Wikipédia en Français

  • Corporate Data Quality — Unternehmensweite Datenqualität betrachtet Datenqualität in einem unternehmensweiten Kontext. Daten werden dabei als Produktionsfaktor und Unternehmenswert (engl. asset) betrachtet, der bewirtschaftet werden muss. Für diese Bewirtschaftung sind… …   Deutsch Wikipedia

  • Data management — comprises all the disciplines related to managing data as a valuable resource. Contents 1 Overview 2 Topics in Data Management 3 Body Of Knowledge 4 Usage …   Wikipedia

  • Data governance — is an emerging discipline with an evolving definition. The discipline embodies a convergence of data quality, data management, data policies, business process management, and risk management surrounding the handling of data in an organization.… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”