Order-3 truncated heptagonal tiling

Order-3 truncated heptagonal tiling
Order-3 truncated heptagonal tiling
Order-3 truncated heptagonal tiling
Poincaré_disk_model
Type Hyperbolic semiregular tiling
Vertex figure 3.14.14
Schläfli symbol t{7,3}
Wythoff symbol 2 3 | 7
Coxeter-Dynkin CDel node 1.pngCDel 7.pngCDel node 1.pngCDel 3.pngCDel node.png
Symmetry [7,3]
Dual Order-7 triakis triangular tiling
Properties Vertex-transitive

In geometry, the Truncated order-3 heptagonal tiling is a semiregular tiling of the hyperbolic plane. There is one triangle and two tetrakaidecagons on each vertex. It has Schläfli symbol of t0,1{7,3}.

Contents

Dual tiling

The dual tiling is called an order-7 triakis triangular tiling, seen as an order-7 triangular tiling with each triangle divided into three by a center point.

Ord7 triakis triang til.png

Related polyhedra and tilings

This hyperbolic tiling is topologically related as a part of sequence of uniform truncated polyhedra with vertex configurations (3.2n.2n), and [n,3] Coxeter group symmetry.

Triangular prism.png
3.4.4
CDel node.pngCDel 3.pngCDel node 1.pngCDel 2.pngCDel node 1.png
Uniform polyhedron-33-t01.png
3.6.6
CDel node.pngCDel 3.pngCDel node 1.pngCDel 3.pngCDel node 1.png
Uniform polyhedron-43-t01.png
3.8.8
CDel node.pngCDel 3.pngCDel node 1.pngCDel 4.pngCDel node 1.png
Uniform polyhedron-53-t01.png
3.10.10
CDel node.pngCDel 3.pngCDel node 1.pngCDel 5.pngCDel node 1.png
Uniform tiling 63-t01.png
3.12.12
CDel node.pngCDel 3.pngCDel node 1.pngCDel 6.pngCDel node 1.png
Uniform tiling 73-t01.png
3.14.14
CDel node.pngCDel 3.pngCDel node 1.pngCDel 7.pngCDel node 1.png
Uniform tiling 83-t01.png
3.16.16
CDel node.pngCDel 3.pngCDel node 1.pngCDel 8.pngCDel node 1.png
Hyperbolic tiling o3x∞x.png
3.∞.∞
CDel node.pngCDel 3.pngCDel node 1.pngCDel infin.pngCDel node 1.png

See also

References

External links