Truncated hexagonal tiling

Truncated hexagonal tiling

In geometry, the truncated hexagonal tiling is a semiregular tiling of the Euclidean plane. There are 2 dodecagons (12-sides) and one triangle on each vertex.

As the name implies this tiling is constructed by a truncation operation applies to a hexagonal tiling, leaving dodecagons in place of the original hexagons, and new triangles at the original vertex locations. It is given an extended Schläfli symbol of "t0,1{6,3}".

Conway calls it a truncated hextille, constructed as a truncation operation applied to a hexagonal tiling (hextille).

Related polyhedra and tilings

This tiling is topologically related as a part of sequence of uniform truncated polyhedra with vertex figure (3.2n.2n), and continues into the hyperbolic plane. These vertex-transitive figures have (*n32) reflectional symmetry.

There are 3 regular and 8 semiregular tilings in the plane.

There is only one uniform coloring of a truncated hexagonal tiling. (Naming the colors by indices around a vertex: 122.) The tiling colors shown in the table is a mixture of 3 types of colored-vertices (a 3-uniform coloring).

See also

* Tilings of regular polygons
* List of uniform tilings

References

* John H. Conway, Heidi Burgiel, Chaim Goodman-Strass, "The Symmetry of Things" 2008, ISBN 978-1-56881-220-5 [http://www.akpeters.com/product.asp?ProdCode=2205]
* (Chapter 2.1: "Regular and uniform tilings", p.58-65)
* Williams, Robert "The Geometrical Foundation of Natural Structure: A Source Book of Design" New York: Dover, 1979. p39

External links

*
*


Wikimedia Foundation. 2010.

Игры ⚽ Нужно решить контрольную?

Look at other dictionaries:

  • Truncated hexagonal prismatic honeycomb — The truncated hexagonal prismatic honeycomb is a space filling tessellation (or honeycomb) in Euclidean 3 space. It is comprised of dodecagonal prisms, and triangular prisms in a ratio of 1:2.It is constructed from a truncated hexagonal tiling… …   Wikipedia

  • Hexagonal tiling — In geometry, the hexagonal tiling is a regular tiling of the Euclidean plane. It has Schläfli symbol of {6,3} or t{3,6} (as a truncated triangular tiling).Conway calls it a hextille.The internal angle of the hexagon is 120 degrees so three… …   Wikipedia

  • Order-3 truncated heptagonal tiling — Poincaré disk model Type Hyperbolic semiregular tiling Vertex figure 3.14.14 Schläfli symbol t{7 …   Wikipedia

  • Bisected hexagonal tiling — Type Dual semiregular tiling Faces 30 60 90 triangle Face configuration V4.6.12 …   Wikipedia

  • Truncated icosidodecahedron — (Click here for rotating model) Type Archimedean solid Uniform polyhedron Elements F = 62, E = 180, V = 120 (χ = 2) Faces by sides …   Wikipedia

  • Triakis triangular tiling — Infobox face uniform polyhedron Polyhedron Type = Dual semiregular tiling Face List = triangle Edge Count = Infinite Vertex Count = Infinite Symmetry Group = p6m or *632 Face Type = V3.12.12 Dual = Truncated hexagonal tiling Property List = face… …   Wikipedia

  • Order-3 heptagonal tiling — Poincaré disk model of the hyperbolic plane Type Regular hyperbolic tiling Vertex figure 7.7.7 Schläfli symbol(s) …   Wikipedia

  • Square tiling — In geometry, the Square tiling is a regular tiling of the Euclidean plane. It has Schläfli symbol of {4,4}.Conway calls it a quadrille.The internal angle of the square is 90 degrees so four squares at a point make a full 360 degrees. It is one of …   Wikipedia

  • Liste Des Polyèdres Uniformes — Les polyèdres uniformes et les pavages forment un groupe bien étudié. Ils sont listés ici pour une comparaison rapide de leurs propriétés et de leurs noms de schéma variés ainsi que de leurs symboles. Cette liste inclut : tous les 75… …   Wikipédia en Français

  • Liste des polyedres uniformes — Liste des polyèdres uniformes Les polyèdres uniformes et les pavages forment un groupe bien étudié. Ils sont listés ici pour une comparaison rapide de leurs propriétés et de leurs noms de schéma variés ainsi que de leurs symboles. Cette liste… …   Wikipédia en Français

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”