Multivariate optical element

Multivariate optical element

A multivariate optical element (MOE), is the key part of a multivariate optical computer; an alternative to conventional spectrometry for the chemical analysis of materials.

It is helpful to understand how light is processed in a multivariate optical computer, as compared to how it is processed in a spectrometer. For example, if we are studying the composition of a powder mixture using diffuse reflectance, a suitable light source is directed at the powder mixture and light is collected, usually with a lens, after it has scattered from the powder surface. Light entering a spectrometer first strikes a device (either a grating or interferometer) that separates light of different wavelengths to be measured. A series of independent measurements is used to estimate the full spectrum of the mixture, and the spectrometer renders a measurement of the spectral intensity at many wavelengths. Multivariate statistics can then be applied to the spectrum produced.

In contrast, when using multivariate optical computing, the light entering the instrument strikes an application specific multivariate optical element, which is uniquely tuned to the pattern that needs to be measured using multivariate analysis.

This system can produce the same result that multivariate analysis of a spectrum would produce. Thus, it can generally produce the same accuracy as laboratory grade spectroscopic systems, but with the fast speed inherent with a pure, passive, optical computer. The multivariate optical computer makes use of optical computing to realize the performance of a full spectroscopic system using traditional multivariate analysis. A side benefit is that the throughput and efficiency of the system is higher than conventional spectrometers, which increases the speed of analysis by orders of magnitude.

While each chemical problem presents its own unique challenges and opportunities, the design of a system for a specific analysis is complex and requires the assembly of several pieces of a spectroscopic puzzle. The data necessary for a successful design are spectral characteristics of light sources, detectors and a variety of optics to be used in the final assemblage, dispersion characteristics of the materials used in the wavelength range of interest, and a set of calibrated sample spectra for pattern-recognition-based analysis. With these pieces assembled, suitable application specific multivariate optical computer designs can be generated and the performance accurately modeled and predicted.

See also

References

  • Myrick, M. L.; Soyemi, O.; Li, H.; Zhang, L.; Eastwood, D. (2001), "Design and testing of a multivariate optical element: The first demonstration of multivariate optical computing for predictive spectroscopy", Analytical Chemistry 73 (6): 1069–1079, doi:10.1007/s002160000642 
  • Myrick, M. L.; Soyemi, O.; Li, H.; Zhang, L.; Eastwood, D. (2004), "Spectral tolerance determination for multivariate optical element design", Fresenius' Journal of Analytical Chemistry 369 (3/4): 351–355, doi:10.1007/s002160000642 

Wikimedia Foundation. 2010.

Игры ⚽ Поможем написать реферат

Look at other dictionaries:

  • Multivariate optical computing — is an approach to the development of spectroscopic instruments, particularly for industrial applications such as process analytical support. Conventional spectroscopic methods often employ multivariate methods to extract the concentration (or… …   Wikipedia

  • Matrix (mathematics) — Specific elements of a matrix are often denoted by a variable with two subscripts. For instance, a2,1 represents the element at the second row and first column of a matrix A. In mathematics, a matrix (plural matrices, or less commonly matrixes)… …   Wikipedia

  • Monte Carlo methods for electron transport — The Monte Carlo method for electron transport is a semiclassical Monte Carlo(MC) approach of modeling semiconductor transport. Assuming the carrier motion consists of free flights interrupted by scattering mechanisms, a computer is utilized to… …   Wikipedia

  • Dirac delta function — Schematic representation of the Dirac delta function by a line surmounted by an arrow. The height of the arrow is usually used to specify the value of any multiplicative constant, which will give the area under the function. The other convention… …   Wikipedia

  • Chemical imaging — (as quantitative chemical mapping) is the analytical capability to create a visual image of components distribution from simultaneous measurement of spectra and spatial, time informations.[1][2] The main idea for chemical imaging, the analyst may …   Wikipedia

  • Near-infrared spectroscopy — Near IR absorption spectrum of dichloromethane showing complicated overlapping overtones of mid IR absorption features. Near infrared spectroscopy (NIRS) is a spectroscopic method that uses the near infrared region of the electromagnetic spectrum …   Wikipedia

  • Near infrared spectroscopy — (NIRS) is a spectroscopic method utilising the near infrared region of the electromagnetic spectrum (from about 800 nm to 2500 nm). Typical applications include pharmaceutical, medical diagnostics (including blood sugar and oximetry), food and… …   Wikipedia

  • Список награждённых Национальной медалью науки США — Джошуа Ледерберг (справа) получает Национальную медаль науки из рук Президента США Джорджа Буша старшего Список …   Википедия

  • Software tools for molecular microscopy — There are a large number of software tools or software applications that have been specifically developed for the field sometimes referred to as molecular microscopy or cryo electron microscopy or cryoEM. Several special issues of the Journal of… …   Wikipedia

  • DNA microarray — A DNA microarray (also commonly known as gene chip, DNA chip, or biochip) is a collection of microscopic DNA spots attached to a solid surface. Scientists use DNA microarrays to measure the expression levels of large numbers of genes… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”