Dryland salinity

Dryland salinity

Dryland salinity is salinity that occurs in a landscape that is not irrigated, as distinct from irrigation salinity and urban salinity.

Contents

Overview

Salinity refers to the movement and concentration of salt in the landscape and its associated detriment to land and water resources; dryland salinity refers to salinity in unirrigated landscapes. Salinity processes extend from local to regional scales and are driven by imbalances in the water budget that result, primarily, from agriculturally driven landscape change. Understanding dryland salinity requires a look at the water cycle.

Water enters the soil from precipitation – this is called Infiltration; water may remain indefinitely within the spaces or pores between soil particles as soil moisture. Soil moisture may be lost to the surface or atmosphere directly, or through plant uptake – this is called evapotranspiration. Soil moisture may also continue to move downward to join the groundwater—this is called groundwater recharge. Recharge is most likely to occur when the amount of water that is available to the soil exceeds the soil’s capacity to store it (field capacity). Recharge may also occur by saturated flow when water bypasses the soil matrix as it moves to depth in macropores (e.g. root holes, fractures).

Excessive recharge may raise the water table locally, or at a landscape scale. When brackish to saline groundwater intersects the ground surface and discharges, this is termed saline discharge. Areas of discharge are called saline seeps (when groundwater intersects the soil surface) or saline scalds (where water is lost by evaporation only). Groundwater discharge manifests in such problems as: reduced agricultural production, degradation of natural environment, reduced surface water quality, damage to infrastructure including roads, as well as soil erosion and denudation of land.

Dryland salinity is a sign that the water balance of the nearby area of land or catchment has been altered. Clearing as little as 25% of a catchment can cause salinity to occur. In addition to adding extra recharge, salinity may also be caused if the aquifers discharge capacity has been exceeded. In many Australian landscapes, aquifer capacity may be several orders of magnitude below that of the altered recharge.

Restoring the balance requires either the introduction of natural vegetation (e.g. mallee eucalyptus or perennial grasses), which intercepts and transpires most of the incoming rainfall; or by adapting agriculture to the increased area of shallow, saline groundwater.

Management of Dryland Salinity

The role of soils in dryland salinity

Dryland salinity management often focuses on vegetation, yet it is the collective role of soils and vegetation that has an effect on the root cause of the problem, recharge. Soil health cannot be ignored as a valuable and extensive activity for the management of dryland salinity – the multiple benefits of improving soil health are clear and can be motivated by the potential for local and regional economic and social gains.

Soil is considered in two contexts when it comes to dryland salinity: Recharge and discharge.

Soils in groundwater recharge areas

Soils absorb and store water according to their water holding or field capacity and how dry they are to start with. In much of Victoria, under typical rainfall and natural vegetation cover, soils take on water during wet winters and dry out over summers as plants consume the water (Young & Young, 2001). The drier the soil when leading into winter, the more water can be stored that might otherwise leak to groundwater.

To reduce recharge to levels that existed in pre-clearing conditions is generally infeasible in most agricultural landscapes. This is because there are too few profitable perennials that can replace crops or that can be adopted at the scale required. In most recharge areas, that are at risk of future salinity, the goal is to minimise recharge. This can be done by planting wide-spaced trees (alley farming), areas of perennials on suitable soils, and by preventing soils from being left without a significant leaf area in winter and spring. In recharge areas remote from saline areas there is often little incentive for farmers to adopt low profit, low recharge systems. In addition, recharge is the source of fresh groundwater, and a trade off between consumptive use and salinity should be acknowledged.

Soils in groundwater discharge areas

The manifestation of dryland salinity is largely a problem of groundwater – however the accumulation of salt within the soil and at the surface due to proximity to or saturation by saline groundwater causes changes to the soil’s chemistry, structure and stability, and the plant life that it supports.

Managing soils for dryland salinity in catchments

In discharge areas, salinity can be managed by establishing salt tolerant plants and/or by engineering systems. Engineering systems include deep open drains, pumps, siphons and various forms of surface water management. Engineering system involve the obvious discharge of salt and water. While saline areas also disharge salt and water, the abundance and timing will be changed. In most Australian States, farmers would be advised to seek advice before using engineering systems.

Establishing salt-tolerant plants can improve salt discharge rates and improve soil health. Improvements undertaken at a catchment scale bring many benefits, not the least of which is providing for increased agricultural and associated regional productivity – utilising water for production that otherwise would contributed to an environmental problem.

See also

References


Wikimedia Foundation. 2010.

Игры ⚽ Поможем сделать НИР

Look at other dictionaries:

  • dryland salinity — /draɪlænd səˈlɪnəti/ (say druyland suh linuhtee) noun the presence of high levels of salt in soil occurring in farming areas where the water balance has been changed causing a rise in the watertable that bring salts to the surface, resulting in… …  

  • Salinity in Australia — Soil salinity and dryland salinity are two problems degrading the environment of Australia. It is a concern in most states, but especially in the south west of Western Australia. TOC The Eastern Mallee and the Western Mallee are areas that are… …   Wikipedia

  • salinity — /səˈlɪnəti/ (say suh linuhtee) noun 1. the presence of soluble salts in soil or water. 2. a level of salt rising from the substratum to the surface of the earth which turns surface fresh water into brackish water and reduces the value of the soil …  

  • Soil salinity — is the salt content in the soil. [ [http://europeandcis.undp.org/WaterWiki/index.php/Soil salinity from Soil salinity in WaterWiki, the on line Knowledge and Collaboration Tool of the Community of Practice (CoP) on Water and UNDP related… …   Wikipedia

  • Environmental issues in Australia — As with other countries there are a number of environmental issues in Australia. IssuesKey conservation issues include the protection of Australian habitat from invasive species, soil salinity and the effects of mining and land clearing on the… …   Wikipedia

  • Land clearing in Australia — largely coincides with areas of high population density, and large tracts of Banksia woodland are cleared for urban expansion every year. [cite journal last = Lamont first = Byron B. authorlink = coauthors = Enright, Neal J.; Witkowski, E. T. F.; …   Wikipedia

  • Glossary of environmental science — This is a glossary of environmental science.Environmental science is the study of interactions among physical, chemical, and biological components of the environment. Environmental science provides an integrated, quantitative, and… …   Wikipedia

  • Agriculture in Australia — is a major industry. 402,000 people are employed in agriculture and agriculture related services, and agriculture accounts for approximately 3% of Australia’s GDP. Until the late 1950s agriculture accounted for up to 80% of Australia s export… …   Wikipedia

  • Greening Australia — Infobox Non profit Non profit name = Greening Australia Non profit Non profit type = founded date = 1982 founder = location = Canberra, Australia key people = area served = Australia focus = method = Science guided revegetation revenue =… …   Wikipedia

  • Advance sowing — (also known as no kill cropping [1]) is an agricultural method developed by Bruce Maynard in 1996 in NSW, Australia that allows the production of annual crops from perennial grasslands. It consists in dry sowing crops directly into existing… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”