- Soil science
Soil science is the study of
soil as anatural resource on the surface of theearth including soil formation, classification and mapping; physical, chemical, biological, and fertility properties of soils; and these properties in relation to the use and management of soils.Sometimes terms which refer to branches of soil science, such as pedology (formation, chemistry, morphology and classification of soil) and
edaphology (influence of soil on organisms, especially plants), are used as if synonymous with soil science. The diversity of names associated with this discipline is related to the various associations concerned. Indeed, engineers, agronomists, chemists, geologists, geographers,biologist s, microbiologists, sylviculturists, sanitarians, archaeologists, and specialists inregional planning , all contribute to further knowledge of soils and the advancement of the soil sciences.Fields of study
Soil occupies the
pedosphere , one ofEarth's spheres that thegeosciences use to organize the Earth conceptually. This is the conceptual perspective of pedology andedaphology , the two main branches ofsoil science . Pedology is the study of soil in its natural setting. Edaphology is the study of soil in relation to soil-dependent uses. Both branches apply a combination ofsoil physics ,soil chemistry , andsoil biology . Due to the numerous interactions between thebiosphere ,atmosphere andhydrosphere that are hosted within the pedosphere, more integrated, less soil-centric concepts are also valuable. Many concepts essential to understanding soil come from individuals not identifiable strictly as soil scientists. This highlights theinterdisciplinary nature of soil concepts.Research
Dependence on and curiosity about soil, exploring the diversity and dynamic of this resource continues to yield fresh discoveries and insights. New avenues of soil research are compelled by a need to understand soil in the context of
climate change , [ Pielke, Roger(December 12 ,2005 ) [http://climatesci.atmos.colostate.edu/2005/12/19/is-soil-an-important-component-of-the-climate-system/ Is Soil an Important Component of the Climate System?] The Climate Science Weblog. Url last accessed2006 -04-19 ]greenhouse gases , [cite web |url=http://www.co2science.org/scripts/CO2ScienceB2C/subject/g/summaries/glomalin.jsp |title= Glomalin -- Summary |archiveurl=http://web.archive.org/web/20070708192258/http://www.co2science.org/scripts/CO2ScienceB2C/subject/g/summaries/glomalin.jsp |archivedate=2007-07-08 Last updated25 January 2006 . CO2 Science. Url last accessed2006 -04-19 ] [cite web |url=http://www.co2science.org/scripts/CO2ScienceB2C/subject/s/summaries/soilstability.jsp |title= Soil (stability) -- Summary |archiveurl=http://web.archive.org/web/20070225230420/http://www.co2science.org/scripts/CO2ScienceB2C/subject/s/summaries/soilstability.jsp |archivedate=2007-02-25. CO2 Science. URL last accessed2006 -04-19 ] andcarbon sequestration . [cite web |url=http://www.co2science.org/scripts/CO2ScienceB2C/subject/c/carbonsoils.jsp |title= Soil Carbon Sequestration |archiveurl=http://web.archive.org/web/20070708192202/http://www.co2science.org/scripts/CO2ScienceB2C/subject/c/carbonsoils.jsp |archivedate=2007-07-08. CO2 Science. Url last accessed2006 -04-19 ] Interest in maintaining the planet's biodiversity and in exploring past cultures has also stimulated renewed interest in achieving a more refined understanding of soil.Mapping
Most knowledge of soil in nature comes from
soil survey efforts. Soil survey, or soil mapping, is the process of determining thesoil type s or other properties of the soil cover over a landscape, and mapping them for others to understand and use. It relies heavily on distinguishing the individual influences of the five classic soil forming factors. This effort draws upongeomorphology ,physical geography , and analysis of vegetation and land-use patterns. Primary data for the soil survey are acquired by field sampling and supported byremote sensing .Classification
As of 2006, the
World Reference Base for Soil Resources , via its Land & Water Development division, is the pre-eminent soil classification system. It replaces the previousFAO soil classification .The WRB borrows from modern soil classification concepts, including
USDA soil taxonomy . The classification is based mainly onsoil morphology as an expressionpedogenesis . A major difference withUSDA soil taxonomy is that soil climate is not part of the system, except insofar as climate influences soil profile characteristics.Many other classification schemes exist, including vernacular systems. The structure in vernacular systems are either nominal, giving unique names to soils or landscapes, or descriptive, naming soils by their characteristics such as red, hot, fat, or sandy. Soils are distinguished by obvious characteristics, such as physical appearance (e.g., color, texture, landscape position), performance (e.g., production capability, flooding), and accompanying vegetation. [ [http://forages.oregonstate.edu/is/ssis/main.cfm?PageID=168 Vernacular Systems] Url last accessed on
2006 -04-18 ] A vernacular distinction familiar to many is classifying texture as heavy or light. Light soil content and better structure, take less effort to turn and cultivate. Contrary to popular belief light soils do not weigh less than heavy soils on an air dry basis nor do they have moreporosity .History
Vasily Dokuchaev , a Russian geologist, geographer and early soil scientist, is credited with identifying soil as a resource whose distinctness and complexity deserved to be separated conceptually from geology and crop production and treated as a whole.Previously, soil had been considered a product of chemical transformations of rocks, a dead substrate from which plants derive nutritious elements. Soil and bedrock were in fact equated. Dokuchaev considers the soil as a natural body having its own genesis and its own history of development, a body with complex and multiform processes taking place within it. The soil is considered as different from bedrock. The latter becomes soil under the influence of a series of soil-formation factors (climate, vegetation, country, relief and age). According to him, soil should be called the "daily" or outward horizons of rocks regardless of the type; they are changed naturally by the common effect of water, air and various kinds of living and dead organisms. [Krasilnikov, N.A. (1958) [http://www.soilandhealth.org/01aglibrary/010112Krasil/010112krasil.intro.html Soil Microorganisms and Higher Plants] ]
A 1914 encyclopedic definition: "the different forms of earth on the surface of the rocks, formed by the breaking down or weathering of rocks". [web cite |url=http://en.wikisource.org/wiki/The_New_Student%27s_Reference_Work/4-0310 |title=Soils |work=The New Student's Reference Work |date= 1914 |publisher= F. E. Compton and Company |accessdate=2008-07-08] serves to illustrate the historic view of soil which persisted from the 19th century. Dokuchaev's late 19th century soil concept developed in the 20th century to one of soil as earthy material that has been altered by living processes.cite book | last = Buol | first = S. W. | authorlink = | coauthors = Hole, F. D. and McCracken, R. J. | title = Soil Genesis and Classification | edition = First | date = 1973 | publisher = Iowa State University Press | location = Ames, IA | id = ISBN 978-0-8138-1460-5 .] A corollary concept is that soil without a living component is simply a part of earth's outer layer.
Further refinement of the soil concept is occurring in view of an appreciation of energy transport and transformation within soil. The term is popularly applied to the material on the surface of the earth's moon and Mars, a usage acceptable within a portion of the scientific community. Accurate to this modern understanding of soil is Nikiforoff's 1959 definition of soil as the "excited skin of the sub aerial part of the earth's crust". [cite journal | author = C. C. Nikiforoff | title = Reappraisal of the soil: Pedogenesis consists of transactions in matter and energy between the soil and its surroundings | journal = Science | volume = 129 | pages = 186–196 | doi = 10.1126/science.129.3343.186 | year = 1959 | pmid = 17808687]
Areas of practice
Academically, soil scientists tend to be drawn to one of five areas of specialization: microbiology, pedology, edaphology, physics or chemistry. Yet the work specifics are very much dictated by the challenges facing our civilization's desire to sustain the land that supports it, and the distinctions between the sub-disciplines of soil science often blur in the process. Soil science professionals commonly stay current in soil chemistry, soil physics, soil microbiology, pedology, and applied soil science in related disciplines
One interesting effort drawing in soil scientists in the USA
as of 2004 is the Soil Quality Initiative. Central to the Soil Quality Initiative is developing indices of soil health and then monitoring them in a way that gives us long term (decade-to-decade) feedback on our performance as stewards of the planet. The effort includes understanding the functions of soil microbiotic crusts and exploring the potential to sequester atmospheric carbon in soil organic matter. The concept of soil quality, however, has not been without its share of controversy and criticism, including critiques by Nobel LaureateNorman Borlaug and World Food Prize WinnerPedro Sanchez .A more traditional role for soil scientists has been to map soils. Most every area in the United States now has a published soil survey, which includes interpretive tables as to how soil properties support or limit activities and uses. An internationally accepted soil taxonomy allows uniform communication of soil characteristics and functions. National and international soil survey efforts have given the profession unique insights into landscape scale functions. The landscape functions that soil scientists are called upon to address in the field seem to fall roughly into six areas:
* Land-based treatment of wastes
**Septic system
**Manure
**Municipalbiosolids
**Food and fiber processing waste
* Identification and protection of environmentally critical areas
**Sensitive and unstable soils
**Wetlands
**Unique soil situations that support valuable habitat, andecosystem diversity
* Management for optimum land productivity
**Silviculture
**Agronomy
***Nutrient management
***Water management
**Native vegetation
**Grazing
* Management for optimum water quality
**Stormwater management
**Sediment anderosion control
* Remediation and restoration of damaged lands
**Mine reclamation
**Flood and storm damage
**Contamination
* Sustainability of desired uses
**Soil conservationThere are also practical applications of soil science that might not be apparent from looking at a published soil survey.
* Radiometric dating: specifically a knowledge of local pedology is used to date prior activity at the site
**Stratification (archeology) where soil formation processes and preservative qualities can inform the study ofarchaeological site s
**Geological phenomena
***Landslide s
***Earthquakes faults
* Altering soils to achieve new uses
**Vitrification to containradioactive waste s
**Enhancing soil microbial capabilities in degrading contaminants (bioremediation ).
**Carbon sequestration
**Environmental soil science
* Pedology
** Soil genesis
**Pedometrics
**Soil morphology
*** Soil micromorphology
**Soil classification
***USDA soil taxonomy
* Soil biology
** Soil microbiology
*Soil chemistry
** Soil biochemistry
** Soil mineralogy
*Soil physics
**Pedotransfer function
**Soil mechanics and engineering
* Soil hydrology,hydropedology Fields of application in soil science
*
Soil survey
* Soil management
* Standard methods of analysis
* Soil fertility / Nutrient management
*Ecosystem studies
*Climate change
* Watershed andwetland studies
*Pedotransfer function Related disciplines
*
Agricultural sciences
**Irrigation management
*Anthropology
** archaeological stratigraphy
*Environmental science
**Landscape ecology
*Geography
**Physical geography
*Geology
**Biogeochemistry
**Geomicrobiology
**Geomorphology
*Hydrology
**Hydrogeology
*Waste management
*Wetland scienceee also
*
Agrology
*International Union of Soil Sciences (IUSS)
*Soil Science Society of America (SSSA)
*Australian Society of Soil Science Incorporated (ASSSI)
*World Congress of Soil Science (WCSS)
*List of Universities with Soil Science Curriculum
*List of State Soil Science Licensing Boards
*List of State Soil Science Associations
*International Soil Reference and Information Centre References
External links
* [https://www.soils.org/certifications/pdf/soil_sci_cert.pdf Certified Professional Soil Scientist]
* [http://www.nscss.org/REGISTRY%20APPLICATION.pdf Registered Professional Soil Scientist] (PDF)
* [http://info.soil.ncsu.edu/ Soil-Science.info]
* [http://soilsciences.blogspot.com/ The Soil Science Daily]
* [http://www.isric.org/ ISRIC - World Soil Information]
* [http://www.soilscientist.org/ IPSS - Insitute of Professional Soil Scientists]
* [http://www.soils.org.uk/ BSSS - British Society of Soil Science]
Wikimedia Foundation. 2010.