Micro black hole

Micro black hole
MBH redirects here. For other uses see MBH (disambiguation)

Micro black holes are tiny black holes, also called quantum mechanical black holes or mini black holes, for which quantum mechanical effects play an important role.[1]

It is possible that such quantum primordial black holes were created in the high-density environment of the early Universe (or big bang), or possibly through subsequent phase transitions. They might be observed by astrophysicists in the near future, through the particles they are expected to emit by Hawking radiation.

Some theories involving additional space dimensions predict that micro black holes could be formed at an energy as low as the TeV range, which will be available in particle accelerators such as the LHC (Large Hadron Collider). Popular concerns have then been raised over end-of-the-world scenarios (see Safety of particle collisions at the Large Hadron Collider). However, such quantum black holes would instantly evaporate, either totally or leaving only a very weakly interacting residue. Beside the theoretical arguments, we can notice that the cosmic rays bombarding the Earth do not produce any damage, although they reach center of mass energies in the range of hundreds of TeV.


Minimum mass of a black hole

In principle, a black hole can have any mass equal to or above the Planck mass. To make a black hole, one must concentrate mass or energy sufficiently that the escape velocity from the region in which it is concentrated exceeds the speed of light. This condition gives the Schwarzschild radius, R = 2GM / c2, where G is Gravitational constant and c is the speed of light, of a black hole of mass M. On the other hand, the Compton wavelength, λ = h / Mc, where h is Planck's constant, represents a limit on the minimum size of the region in which a mass M at rest can be localized. For sufficiently small M, the reduced Compton wavelength (\scriptstyle{\lambda \; = \; \hbar/Mc} , where ħ is Dirac's constant) exceeds half the Schwarzschild radius, and no black hole description exists. This smallest mass for a black hole is thus approximately the Planck mass.

Some extensions of present physics posit the existence of extra dimensions of space. In higher-dimensional spacetime, the strength of gravity increases more rapidly with decreasing distance than in three dimensions. With certain special configurations of the extra dimensions, this effect can lower the Planck scale to the TeV range. Examples of such extensions include large extra dimensions, special cases of the Randall-Sundrum model, and String theory configurations like the GKP solutions. In such scenarios, black hole production could possibly be an important and observable effect at the LHC.[1][2][3][4][5] It would also be a common natural phenomenon induced by the cosmic rays.

Stability of a micro black hole

Hawking radiation

In 1974 Stephen Hawking argued that due to quantum effects, black holes "evaporate" by a process now referred to as Hawking radiation in which elementary particles (photons, electrons, quarks, gluons, etc.) are emitted.[6] His calculations show that the smaller the size of the black hole, the faster the evaporation rate, resulting in a sudden burst of particles as the micro black hole suddenly explodes.

Any primordial black hole of sufficiently low mass will Hawking evaporate to near the Planck mass within the lifetime of the Universe. In this process, these small black holes radiate away matter. A rough picture of this is that pairs of virtual particles emerge from the vacuum near the event horizon, with one member of a pair being captured, and the other escaping the vicinity of the black hole. The net result is the black hole loses mass (due to conservation of energy). According to the formulae of black hole thermodynamics, the more the black hole loses mass the hotter it becomes, and the faster it evaporates, until it approaches the Planck mass. At this stage a black hole would have a Hawking temperature of TP / 8π (5.6×1032 K), which means an emitted Hawking particle would have an energy comparable to the mass of the black hole. Thus a thermodynamic description breaks down. Such a mini-black hole would also have an entropy of only 4π nats, approximately the minimum possible value. At this point then, the object can no longer be described as a classical black hole, and Hawking's calculations also break down.

While Hawking radiation is sometimes questioned,[7] Leonard Susskind summarizes an expert perspective in his recent book:[8] "Every so often, a physics paper will appear claiming that black holes don't evaporate. Such papers quickly disappear into the infinite junk heap of fringe ideas."

Conjectures for the final state

Conjectures for the final fate of the black hole include total evaporation and production of a Planck mass-sized black hole remnant. It is possible that such Planck-mass black holes, no longer able either to absorb energy gravitationally like a classical black hole because of the quantised gaps between their allowed energy levels, nor to emit Hawking particles for the same reason, may in effect be stable objects. In such case, they would be WIMPs (weakly interacting massive particles); this could explain dark matter.[citation needed]

Primordial black holes

Formation in the early Universe

Production of a black hole requires concentration of mass or energy within the corresponding Schwarzschild radius. It is hypothesized that shortly after the big bang the Universe was dense enough to fit within its own Schwarzschild radius. Even so, at that time the Universe was not able to collapse into a singularity due to its uniform mass distribution and rapid growth. This, however, does not fully exclude the possibility that black holes of various sizes may have emerged locally. A black hole formed in this way is called a primordial black hole and is the most widely accepted theory for the possible creation of micro black holes.

Expected observable effects

Primordial black holes of initial masses around 1015 grams would be completing their evaporation today; lighter primordial black holes would have already evaporated.[1] In optimistic circumstances, the Fermi Gamma-ray Space Telescope satellite, launched in June 2008, might detect experimental evidence for evaporation of nearby black holes by observing gamma ray bursts.[9][10][11] It is unlikely that a collision between a microscopic black hole and an object such as a star or a planet would be noticeable. This is due to the fact that the small radius and high density of the black hole would allow it to pass straight through any object consisting of normal atoms, interacting with only few of its atoms while doing so. It has, however, been suggested that a small black hole (of sufficient mass) passing through the Earth would produce a detectable acoustic or seismic signal.[12][13][14][15]

Manmade micro black holes

Can we produce micro black holes?

In familiar three-dimensional gravity, the minimum energy of a microscopic black hole is 1019 GeV, which would have to be condensed into a region on the order of the Planck length. This is far beyond the limits of any current technology. It is estimated[citation needed] that to collide two particles to within a distance of a Planck length with currently achievable magnetic field strengths would require a ring accelerator about 1000 light years in diameter to keep the particles on track. Stephen Hawking also said in chapter 6 of his Brief History of Time that physicist John Archibald Wheeler once calculated that a very powerful hydrogen bomb using all the deuterium in all the water on Earth could also generate such a black hole, but Hawking does not provide this calculation or any reference to it to support this assertion.

However, in some scenarios involving extra dimensions of space, the Planck mass can be as low as the TeV range. The Large Hadron Collider (LHC) has a design energy of 14 TeV for proton-proton collisions and 1150 TeV for Pb-Pb collisions. It was argued in 2001 that in these circumstances black hole production could be an important and observable effect at the LHC[2][3][4][5][16] or future higher-energy colliders. Such quantum black holes should decay emitting sprays of particles that could be seen by detectors at these facilities.[2][3] A paper by Choptuik and Pretorius, published on March 17, 2010 in Physical Review Letters, presented a computer-generated proof that micro black holes must form from two colliding particles with sufficient energy, which might be allowable at the energies of the LHC if additional dimensions are present other than the customary four (three space, one time).[17][18]

Safety arguments

Hawking's calculation[6] and more general quantum mechanical arguments predict that micro black holes evaporate almost instantaneously. Additional safety arguments beyond those based on Hawking radiation were given in the paper,[19][20] which showed that in hypothetical scenarios with stable black holes that could damage Earth, such black holes would have been produced by cosmic rays and would have already destroyed known astronomical objects such as the Earth, Sun, neutron stars, or white dwarfs. Further, microscopic black holes generated from a particle accelerator are very small in size and are expected to have a high velocity[citation needed], making it impossible[citation needed] for them to accrete a dangerously large amount of mass before leaving the earth for good.

Black holes in quantum theories of gravity

It is possible, in some theories of quantum gravity, to calculate the quantum corrections to ordinary, classical black holes. Contrarily to conventional black holes which are solutions of gravitational field equations of the general theory of relativity, quantum gravity black holes incorporate quantum gravity effects in the vicinity of the origin, where classically a curvature singularity occurs. According to the theory employed to model quantum gravity effects, there are different kinds of quantum gravity black holes, namely loop quantum black holes, noncommutative black holes, asympotically safe black holes. In these approaches black holes are singularity free.


  • In David Brin's novel Earth an artificial micro black hole slips into the core of the earth.
  • In Dan Simmons's novels Ilium and Olympos, a major landmark is "Paris Crater", the site where a man made micro black hole's containment field failed, and the black hole sank toward the centre of the earth before collapsing (presumably in accordance with the Hawking radiation theory), leaving a volcanic crater in its wake.
  • In the short story How We Lost the Moon, A True Story by Frank W. Allen, which is actually written by Paul J. McAuley, a micro black hole is accidentally created on the Moon and gradually consumes it.[21]
  • Larry Niven's Hugo Award-winning stories The Hole Man and The Borderland of Sol deal with "quantum black holes".
  • In Martin Caidin's novel Star Bright, an object is created during an implosion-fusion test that has essentially the properties of a micro black hole, though it is not given that name. The object is eventually destroyed, but the resulting explosion destroys a huge area around it.
  • In Steven R. Donaldson's 5 volume Gap series of books he presents singularity grenades as anti-spaceship cosmic weapons that release a micro black hole on impact with a ship.
  • In Bungie's award-winning Halo Series, the method of faster-than-light travel for spacecraft is through an nondimensional domain known as 'Slipspace', and is made possible by ripping the space-time continuum by having slipspace drives artificially generating thousands of micro black holes that quickly evaporate via Hawking radiation.
  • In the Video game Master of Orion II one of the weapons a player can use is a micro black hole generator, which is used to immobilize and destroy enemy ships.
  • In a promotional video for the video game Portal 2, the Aperture Science Handheld Dual Portal Device is shown to have a miniature black hole and event horizon approximation ring.


  1. ^ a b c B.J. Carr and S.B. Giddings, "Quantum black holes,"Scientific American 292N5 (2005) 30.
  2. ^ a b c Giddings, S. B. & Thomas, S. D. (2002). "High-energy colliders as black hole factories: The End of short distance physics". Phys. Rev. D 65 (5): 056010. arXiv:hep-ph/0106219. Bibcode 2002PhRvD..65e6010G. doi:10.1103/PhysRevD.65.056010. 
  3. ^ a b c Dimopoulos, S.; Landsberg, G. L. (2001). "Black Holes at the Large Hadron Collider". Phys. Rev. Lett. 87 (16): 161602. arXiv:hep-ph/0106295. Bibcode 2001PhRvL..87p1602D. doi:10.1103/PhysRevLett.87.161602. PMID 11690198. 
  4. ^ a b Johnson, George (September 11, 2001). "Physicists Strive to Build A Black Hole". The New York Times. http://www.nytimes.com/2001/09/11/science/physicists-strive-to-build-a-black-hole.html. Retrieved 2010-05-12. 
  5. ^ a b "The case for mini black holes". CERN courier. Nov 2004. http://cerncourier.com/cws/article/cern/29199. 
  6. ^ a b Hawking, S. W. (1975). "Particle Creation by Black Holes". Commun. Math. Phys. 43 (3): 199–220. Bibcode 1975CMaPh..43..199H. doi:10.1007/BF02345020. 
  7. ^ Helfer, A. D. (2003). "Do black holes radiate?". Reports on Progress in Physics 66 (6): 943. arXiv:gr-qc/0304042. Bibcode 2003RPPh...66..943H. doi:10.1088/0034-4885/66/6/202. 
  8. ^ Susskind, L. (2008). The Black Hole War: My battle with Stephen Hawking to make the world safe for quantum mechanics. New York: Little, Brown. ISBN 9780316016407. 
  9. ^ Barrau, A. (2000). "Primordial black holes as a source of extremely high energy cosmic rays". Astroparticle Physics 12 (4): 269–275. arXiv:astro-ph/9907347. Bibcode 2000APh....12..269B. doi:10.1016/S0927-6505(99)00103-6. 
  10. ^ McKee, M. (30 May 2006). "Satellite could open door on extra dimension". New Scientist. http://www.newscientist.com/article/dn9240-satellite-could-open-door-on-extra-dimension.html. 
  11. ^ "Fermi Gamma Ray Space Telescope: "Mini" black hole detection". http://fermi.gsfc.nasa.gov/help/tech/minibh.html. 
  12. ^ Khriplovich, I. B.; Pomeransky, A. A.; Produit, N. & Ruban, G. Yu. (2008). "Can one detect passage of small black hole through the Earth?". Physical Review D 77 (6): 064017. Bibcode 2008PhRvD..77f4017K. doi:10.1103/PhysRevD.77.064017. 
  13. ^ Khriplovich, I. B.; Pomeransky, A. A.; Produit, N. & Ruban, G. Yu.. "Passage of small black hole through the Earth. Is it detectable?". Pre-Print. arXiv:0801.4623. Bibcode 2008arXiv0801.4623K. 
  14. ^ Cain, Fraser (20 June 2007). "Are Microscopic Black Holes Buzzing Inside the Earth?". Universe Today. http://www.universetoday.com/2007/06/20/are-microscopic-black-holes-buzzing-inside-the-earth. 
  15. ^ The Schwarzschild radius of a 1015 grams black hole is ~148 fm (148 ? 10?15 m) (which is much smaller than an atom, but larger than an atomic nucleus)
  16. ^ Schewe, Phillip F.; Stein, Ben; Riordon, James (September 26, 2001). "??". Bulletin of Physics News (American Institute of Physics) 558. 
  17. ^ Choptuik, Matthew W. & Pretorius, Frans (2010). "Ultrarelativistic Particle Collisions". Phys. Rev. Lett. 104 (11): 111101. arXiv:0908.1780. Bibcode 2010PhRvL.104k1101C. doi:10.1103/PhysRevLett.104.111101. PMID 20366461. 
  18. ^ Peng, G. X.; Wen, X. J.; Chen, Y. D. (2006). "New solutions for the color-flavor locked strangelets". Physics Letters B 633 (2–3): 314–318. arXiv:hep-ph/0512112. Bibcode 2006PhLB..633..314P. doi:10.1016/j.physletb.2005.11.081. 
  19. ^ S.B. Giddings and M.L. Mangano, "Astrophysical implications of hypothetical stable TeV-scale black holes," arXiv:0806.3381, Phys. Rev. D78: 035009, 2008
  20. ^ M.E. Peskin, "The end of the world at the Large Hadron Collider?" Physics 1, 14 (2008)
  21. ^ http://www.bestsf.net/reviews/mcauleylittlemachines.html[dead link]


External links

Wikimedia Foundation. 2010.

Нужен реферат?

Look at other dictionaries:

  • Micro Black Hole — Das Micro Black Hole (englisch für „Schwarzes Mikro Loch“) ist ein hypothetisches, sehr kleines und sehr leichtes Schwarzes Loch. Mitte der 1970er Jahre stellte Roger Penrose die Vermutung auf, Schwarze Löcher könnten auch im Labor erzeugt werden …   Deutsch Wikipedia

  • Black hole — For other uses, see Black hole (disambiguation). Simulated view of a black hole (center) in front of the Large Magellanic Cloud. Note the gravitat …   Wikipedia

  • Black hole (disambiguation) — A black hole is an object with sufficient density that the force of gravity prevents anything from escaping from it except through quantum tunneling behavior.It can also refer to:in media: * The Black Hole , a 1979 science fiction movie * Black… …   Wikipedia

  • black hole —    by Kylie Message   Deleuze and Guattari believe that the role of philosophy is to invent new concepts that challenge the way that philosophy itself is written and formulated. Because of this, they draw both from new ideas and from those of a… …   The Deleuze dictionary

  • black hole —    by Kylie Message   Deleuze and Guattari believe that the role of philosophy is to invent new concepts that challenge the way that philosophy itself is written and formulated. Because of this, they draw both from new ideas and from those of a… …   The Deleuze dictionary

  • Charged black hole — A charged black hole is a black hole that possesses electric charge. Since the electromagnetic repulsion in compressing an electrically charged mass is dramatically greater than the gravitational attraction (by about 40 orders of magnitude), it… …   Wikipedia

  • Nonsingular black hole models — A nonsingular black hole model is a mathematical theory of black holes that avoids certain theoretical problems with the standard black hole model, including information loss and the unobservable nature of the black hole event horizon. Contents 1 …   Wikipedia

  • Micro Maniacs — Developer(s) Codemasters Publisher(s) THQ …   Wikipedia

  • Micro trou noir — Les micro trous noirs sont de minuscules trous noirs hypothétiques, également appelés trous noirs quantiques ou mini trous noirs, pour lesquels les effets liés à la mécanique quantique jouent un rôle important[1]. Il est possible que de tels… …   Wikipédia en Français

  • Properties and features of black holes — According to the No Hair theorem a black hole has only three independent physical properties: mass, charge and angular momentum. [citation|last=Heusler |first=M. |year=1998 |title=Stationary Black Holes: Uniqueness and Beyond |journal=Living Rev …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”