Clifford Taubes

Clifford Taubes
Clifford Taubes

Clifford Taubes, 2010.
Born 1954 (age 56–57)
Rochester, New York
Nationality  United States
Fields Mathematical physics
Institutions Harvard University
Alma mater Harvard University
Doctoral advisor Arthur Jaffe
Doctoral students Jim Bryan
Tomasz Mrowka
Known for Taubes's Gromov invariant
Notable awards Shaw Prize (2009)
Clay Research Award (2008)
NAS Award in Mathematics (2008)
Veblen Prize (1991)

Clifford Henry Taubes (born 1954) is the William Petschek Professor of Mathematics at Harvard University and works in gauge field theory, differential geometry, and low-dimensional topology.

Contents

Early career

Taubes received his Ph.D. in physics in 1980 under the direction of Arthur Jaffe, having proven results collected in (Jaffe & Taubes 1980) about the existence of solutions to the Landau–Ginzburg vortex equations and the Bogomol'nyi monopole equations.

Soon, he began applying his gauge-theoretic expertise to pure mathematics. His work on the boundary of the moduli space of solutions to the Yang-Mills equations was used by Simon Donaldson in his proof of Donaldson's theorem. He proved in (Taubes 1987) that R4 has an uncountable number of smooth structures (see also exotic R4), and (with Raoul Bott in Bott & Taubes 1989) proved Witten's rigidity theorem on the elliptic genus.

Work based on Seiberg–Witten theory

In a series of four long papers in the 1990s (collected in Taubes 2000), Taubes proved that, on a closed symplectic four-manifold, the (gauge-theoretic) Seiberg–Witten invariant is equal to an invariant which enumerates certain pseudoholomorphic curves and is now known as Taubes's Gromov invariant. This fact has transformed mathematicians' understanding of the topology of symplectic four-manifolds.

More recently (in Taubes 2007), by using Seiberg–Witten Floer homology as developed by Peter Kronheimer and Tomasz Mrowka together with some new estimates on the spectral flow of Dirac operators and some methods from Taubes 2000), Taubes proved the longstanding Weinstein conjecture for all three-dimensional contact manifolds, thus establishing that the Reeb vector field on such a manifold always has a closed orbit. Expanding both on this and on the equivalence of the Seiberg–Witten and Gromov invariants, Taubes has also proven (in a long series of preprints, beginning with Taubes 2008) that a contact 3-manifold's embedded contact homology is isomorphic to a version of its Seiberg–Witten Floer cohomology. More recently, Taubes, in collaboration with Kutluhan and Lee, have announced and begun publishing a proof that embedded contact homology is isomorphic to Heegaard Floer homology.

Honors and awards

Books

  • Modeling Differential Equations in Biology ISBN 0-13-017325-8
  • The L Squared Moduli Spaces on Four Manifold With Cylindrical Ends (Monographs in Geometry and Topology)ISBN 1-57146-007-1
  • Metrics, Connections and Gluing Theorems (CBMS Regional Conference Series in Mathematics) ISBN 0-8218-0323-9

References

  1. ^ "NAS Award in Mathematics". National Academy of Sciences. http://www.nasonline.org/site/PageServer?pagename=AWARDS_mathematics. Retrieved 13 February 2011. 
  • Jaffe, Arthur; Taubes, Clifford Henry (1980), Vortices and Monopoles: The Structure of Static Gauge Theories, Progress in Physics, 2, Birkhauser, ISBN 3-7643-3025-2, MR0614447 
  • Taubes, Clifford Henry (1987), "Gauge theory on asymptotically periodic $4$-manifolds.", Journal of Differential Geometry 25: 363–430, MR0882829 
  • Bott, Raoul; Taubes, Clifford Henry (1989), "On the rigidity theorems of Witten.", Journal of the American Mathematical Society (American Mathematical Society) 2 (1): 137–186, doi:10.2307/1990915, JSTOR 1990915, MR0954493 
  • Taubes, Clifford Henry (2000), Wentworth, Richard, ed., Seiberg Witten and Gromov invariants for symplectic 4-manifolds, First International Press Lecture Series, 2, Somerville, MA: International Press, pp. vi+401, ISBN 1-57146-061-6, MR1798809 
  • Taubes, Clifford Henry (2007), "The Seiberg-Witten equations and the Weinstein conjecture.", Geometry and Topology 11: 2117–2202, doi:10.2140/gt.2007.11.2117, MR2350473 
  • Taubes, Clifford Henry (2008). "Embedded contact homology and Seiberg-Witten Floer cohomology I". arXiv:0811.3985. 

External links


Wikimedia Foundation. 2010.

Игры ⚽ Нужна курсовая?

Look at other dictionaries:

  • Clifford Taubes — Clifford Henry Taubes, né à Rochester (État de New York) en 1954, est un professeur de mathématiques à Harvard qui travaille sur les théories de jauge en géométrie différentielle. Taubes en 2010 Sommaire …   Wikipédia en Français

  • Clifford Taubes — Clifford Henry Taubes (* 21. Februar 1954) ist ein US amerikanischer Mathematiker, der sich mit Differentialgeometrie, Topologie und mathematischer Physik (Eichtheorien) beschäftigt. Taubes 2010 Inhaltsverzeichnis …   Deutsch Wikipedia

  • Taubes — is a surname and may refer to:* Aaron Moses Taubes (1787 1852), Polish Romanian rabbi and author * Clifford Taubes, professor of mathematics at Harvard ** Taubes s Gromov invariant, mathematical concept named after Clifford Taubes * Jacob Taubes… …   Wikipedia

  • Taubes — ist der Name folgender Personen: Clifford Taubes (* 1954), amerikanischer Mathematiker Jacob Taubes (1923–1987), Judaist, Religionssoziologe, Philosoph Susan Taubes (1928–1969), Kulturwissenschaftlerin und die erste Frau von Jacob Taubes …   Deutsch Wikipedia

  • Clifford — is both a given name and a surname of Old English origin that applies to a number of individuals or places. It simply means ford by a cliff .[1] Clifford was a common surname mainly in the 18th century but lost its prominence over the years.… …   Wikipedia

  • Taubes — puede hacer referencia a: Clifford Taubes, matemático estadounidense. Gary Taubes, escritor estadounidense. Jacob Taubes, sociólogo de la religión y filósofo alemán. Esta página de desambiguación cataloga artículos relacionados con el mismo… …   Wikipedia Español

  • Taubes's Gromov invariant — In mathematics, the Gromov invariant of Clifford Taubes counts embedded (possibly disconnected) pseudoholomorphic curves in a symplectic 4 manifold. Taubes proved that is equivalent to the Seiberg Witten equations, in a series of four long papers …   Wikipedia

  • Floer — Andreas Floer 1986 in Bochum Andreas Floer [fløːɐ] (* 23. August 1956 in Duisburg; † 15. Mai 1991 in Bochum durch Suizid) war ein deutscher Mathematiker, der wichtige Beiträge zur (symplektischen) Topologi …   Deutsch Wikipedia

  • Liste der Biografien/Ta — Biografien: A B C D E F G H I J K L M N O P Q …   Deutsch Wikipedia

  • Tomasz Mrowka — Tomasz Mrowka, Aarhus 2011. Tomasz Mrowka (* 9. September 1961 in State College, Pennsylvania) ist ein US amerikanischer Mathematiker, der sich mit Differentialgeometrie und drei und vierdimensionaler Topologie beschäftigt. Mrowka studierte am… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”