Weinstein conjecture

Weinstein conjecture

In mathematics, the Weinstein conjecture refers to a general existence problem for periodic orbits of Hamiltonian or Reeb vector flows. More specifically, the current understanding is that a regular compact contact type level set of a Hamiltonian on a symplectic manifold should carry at least one periodic orbit of the Hamiltonian flow. The conjecture is stated for any Hamiltonian on any "2n"-dimensional symplectic manifold.

By definition, a level set of contact type admits a contact form obtained by contracting the Hamiltonian vector field into the symplectic form. In this case, the Hamiltonian flow is a Reeb vector field on that level set. It is a fact that any contact manifold ("M",α) can be embedded into a canonical symplectic manifold, called the symplectization of "M", such that "M" is a contact type level set (of a canonically defined Hamiltonian) and the Reeb vector field is a Hamiltonian flow. That is, any contact manifold can be made to satisfy the requirements of the Weinstein conjecture. Since it is known that any orbit of a Hamiltonian flow is contained in a level set, the Weinstein conjecture is a statement about contact manifolds.

It has been known that any contact form is isotopic to a form that admits a closed Reeb orbit; for example, for any contact manifold there is a compatible open book decomposition, whose binding is a closed Reeb orbit. This is not enough to prove the Weinstein conjecture, though, because the Weinstein conjecture states that "every" contact form admits a closed Reeb orbit, while an open book determines a closed Reeb orbit for a form which is only isotopic to the given form.

The conjecture was formulated in 1978 by Alan Weinstein. In several cases, the existence of a periodic orbit was known. For instance, Rabinowitz showed that on star-shaped level sets of a Hamiltonian function on a symplectic manifold, there were always periodic orbits (Weinstein independently proved the special case of convex level sets). Weinstein observed that the hypotheses of several such existence theorems could be subsumed in the condition that the level set be of contact type. (Weinstein's original conjecture included the condition that the first de Rham cohomology group of the level set is trivial; this hypothesis turned out to be unnecessary).

In October 2006, Clifford Taubes posted an [http://arxiv.org/abs/math.SG/0611007 article] to the mathematics arXiv which contains a proposed proof of the conjecture for 3-dimensional manifolds. His proof uses a variant of Seiberg-Witten Floer homology and pursues a strategy analogous to his proof that the Seiberg-Witten and Gromov invariants are equivalent on a symplectic four-manifold. Taubes's proof provides a shortcut to a the closely related program of proving the Weinstein conjecture by showing that the Embedded contact homology of any contact three-manifold is nontrivial.

References

* [http://arxiv.org/abs/math.DG/0310330 Ginzburg, Viktor. "The Weinstein conjecture and the theorems of nearby and almost existence"]

* [http://arxiv.org/math.SG/0611007 Taubes, C. H., "The Seiberg-Witten equations and the Weinstein conjecture".]

* Weinstein Alan, "On the hypotheses of Rabinowitz' periodic orbit theorem". Journal of Diff. Eq., Vol. 33 , 1979 , pp. 353 - 358.


Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Weinstein — is a German language Jewish surname meaning wine stone , referring to the crystals of potassium bitartrate used in the process of fermenting grape juice. Weinstein may refer to:* Alan Weinstein, mathematician ** Weinstein conjecture * Allen… …   Wikipedia

  • Conjecture de Weinstein — Champ de Reeb Le champ de Reeb est un champ de vecteurs associé à toute forme de contact. Cette notion se situe à l intersection de la géométrie de contact et des systèmes dynamiques. Soit α une forme de contact sur une variété de dimension 2n+1 …   Wikipédia en Français

  • Weinstein — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Weinstein est un nom de famille germanique dithématique dont l étymologie rappelle le vin ( Wein ) et la matière solide ou la pierre ( Stein ). Pour… …   Wikipédia en Français

  • Théorème de Weinstein — Le théorème de Weinstein (en) est un théorème élémentaire de la géométrie symplectique, qui caractérise la géométrie semi locale des sous variétés lagrangiennes des variétés symplectiques. Il peut être utilisé : Pour répondre à la… …   Wikipédia en Français

  • Champ de Reeb — Le champ de Reeb (en) est un champ de vecteurs associé à toute forme de contact. Cette notion se situe à l intersection de la géométrie de contact et des systèmes dynamiques. Soit α une forme de contact sur une variété de dimension 2n+1. Il… …   Wikipédia en Français

  • Champ De Reeb — Le champ de Reeb est un champ de vecteurs associé à toute forme de contact. Cette notion se situe à l intersection de la géométrie de contact et des systèmes dynamiques. Soit α une forme de contact sur une variété de dimension 2n+1. Il existe un… …   Wikipédia en Français

  • Champ de reeb — Le champ de Reeb est un champ de vecteurs associé à toute forme de contact. Cette notion se situe à l intersection de la géométrie de contact et des systèmes dynamiques. Soit α une forme de contact sur une variété de dimension 2n+1. Il existe un… …   Wikipédia en Français

  • Liste de conjectures mathématiques — Ce qui suit est une liste de conjectures mathématiques, non exhaustive. Elles sont divisées en quatre sections, en accord avec leur état en 2011. Voir aussi : Conjecture d Erdős (en), qui liste des conjectures de Paul Erdős et de ses… …   Wikipédia en Français

  • List of conjectures — This is an incomplete list of mathematical conjectures. They are divided into four sections, according to their status in 2007. See also: * Erdős conjecture, which lists conjectures of Paul Erdős and his collaborators * Unsolved problems in… …   Wikipedia

  • Floer homology — is a mathematical tool used in the study of symplectic geometry and low dimensional topology. First introduced by Andreas Floer in his proof of the Arnold conjecture in symplectic geometry, Floer homology is a novel homology theory arising as an… …   Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”