Taubes's Gromov invariant
- Taubes's Gromov invariant
In mathematics, the Gromov invariant of Clifford Taubes counts embedded (possibly disconnected) pseudoholomorphic curves in a symplectic 4-manifold.
Taubes proved that is equivalent to the Seiberg-Witten equations, in a series of four long papers. Much of the analytical complexity connected to this invariant comes from properly counting multiply-covered pseudoholomorphic curves.
Embedded contact homology is an attempt to generalize these results to noncompact four-manifolds that are a compact contact three-manifold cross the real numbers; conjecturally, a certain count of embedded holomorphic curves gives the differential for a homology theory isomorphic to Seiberg-Witten-Floer homology.
References
* Taubes, Clifford (2000). "Seiberg-Witten and Gromov Invariants in Symplectic 4-manifolds". Boston: International Press. ISBN 1-57146-061-6
Wikimedia Foundation.
2010.
Look at other dictionaries:
Taubes — is a surname and may refer to:* Aaron Moses Taubes (1787 1852), Polish Romanian rabbi and author * Clifford Taubes, professor of mathematics at Harvard ** Taubes s Gromov invariant, mathematical concept named after Clifford Taubes * Jacob Taubes… … Wikipedia
Gromov–Witten invariant — In mathematics, specifically in symplectic topology and algebraic geometry, Gromov–Witten (GW) invariants are rational numbers that, in certain situations, count pseudoholomorphic curves meeting prescribed conditions in a given symplectic… … Wikipedia
Clifford Taubes — Clifford Taubes, 2010. Born 1954 (age 56–57) Roche … Wikipedia
Clifford Taubes — Clifford Henry Taubes, né à Rochester (État de New York) en 1954, est un professeur de mathématiques à Harvard qui travaille sur les théories de jauge en géométrie différentielle. Taubes en 2010 Sommaire … Wikipédia en Français
Mikhail Leonidovich Gromov — For other people of the same name, see Gromov. Mikhail Leonidovich Gromov Mikhail Gromov Born … Wikipedia
Seiberg–Witten invariant — In mathematics, Seiberg–Witten invariants are invariants of compact smooth 4 manifolds introduced by harvtxt|Witten|1994, using the Seiberg Witten theory studied by harvs|txt=yes|last=Seiberg|last2=Witten|year1=1994a|year2=1994b during their… … Wikipedia
Floer homology — is a mathematical tool used in the study of symplectic geometry and low dimensional topology. First introduced by Andreas Floer in his proof of the Arnold conjecture in symplectic geometry, Floer homology is a novel homology theory arising as an… … Wikipedia
List of mathematics articles (T) — NOTOC T T duality T group T group (mathematics) T integration T norm T norm fuzzy logics T schema T square (fractal) T symmetry T table T theory T.C. Mits T1 space Table of bases Table of Clebsch Gordan coefficients Table of divisors Table of Lie … Wikipedia
Floer-Homologie — Floer Homologien (FH) bezeichnet in der Topologie und Differentialgeometrie eine Gruppe ähnlich konstruierter Homologie Invarianten. Sie haben ihren Ursprung im Werk von Andreas Floer und sind seitdem ständig weiterentwickelt worden. Floer… … Deutsch Wikipedia
Floerhomologie — Floer Homologien (FH) bezeichnet in der Topologie und Differentialgeometrie eine Gruppe ähnlich konstruierter Homologie Invarianten. Sie haben ihren Ursprung im Werk von Andreas Floer und sind seitdem ständig weiterentwickelt worden. Floer… … Deutsch Wikipedia