Dirac operator

Dirac operator

In mathematics and quantum mechanics, a Dirac operator is a differential operator that is a formal square root, or half-iterate, of a second-order operator such as a Laplacian. The original case which concerned Paul Dirac was to factorise formally an operator for Minkowski space, to get a form of quantum theory compatible with special relativity; to get the relevant Laplacian as a product of first-order operators he introduced spinors.

In general, let D be a first-order differential operator acting on a vector bundle V over a Riemannian manifold M.

If

D^2=\Delta, \,

with Δ being the Laplacian of V, D is called a Dirac operator.

In high-energy physics, this requirement is often relaxed: only the second-order part of D2 must equal the Laplacian.

Contents

Examples

  1. -i\partial_x is a Dirac operator on the tangent bundle over a line.


  2. We now consider a simple bundle of importance in physics: The configuration space of a particle with spin 12 confined to a plane, which is also the base manifold. It's represented by a a wavefunction ψ: R2C2
    \begin{bmatrix}\chi(x,y) \\ \eta(x,y)\end{bmatrix},
    where x and y are the usual coordinate functions on R2. χ specifies the probability amplitude for the particle to be in the spin-up state, and similarly for η. The so-called spin-Dirac operator can then be written
    D=-i\sigma_x\partial_x-i\sigma_y\partial_y,\,
    where σi are the Pauli matrices. Note that the anticommutation relations for the Pauli matrices make the proof of the above defining property trivial. Those relations define the notion of a Clifford algebra. Solutions to the Dirac equation for spinor fields are often called harmonic spinors[1].


  3. The most famous Dirac operator describes the propagation of a free fermion in three dimensions and is elegantly written
    D=\gamma^\mu\partial_\mu\ \equiv \partial\!\!\!/,
    using the Feynman slash notation.


  4. There is also the Dirac operator arising in Clifford analysis. In euclidean n-space this is
    D=\sum_{j=1}^{n}e_{j}\frac{\partial}{\partial x_{j}}
    where
     \{e_{j}:j=1,\ldots, n\}
    is an orthonormal basis for euclidean n-space, and \mathbb{R}^{n} is considered to be embedded in a Clifford algebra. This is a special case of the Atiyah-Singer-Dirac operator acting on sections of a spinor bundle.


  5. For a spin manifold, M, the Atiyah-Singer-Dirac operator is locally defined as follows: For x\in M and e_{1}(x),\ldots,e_{j}(x) a local orthonormal basis for the tangent space of M at x, the Atiyah-Singer-Dirac operator is
    \sum_{j=1}^{n}e_{j}(x)\tilde{\Gamma}_{e_{j}(x)},
    where \tilde{\Gamma} is a lifting of the Levi-Civita connection on M to the spinor bundle over M.

Generalisations

In Clifford analysis, the operator D: C^\infty(\R^k\otimes \R^n,S)\to C^\infty(\R^k\otimes\R^n,\C^k\otimes S) acting on spinor valued functions defined by

f(x_1,\ldots,x_k)\mapsto
\begin{pmatrix}
\partial_{\underline{x_1}}f\\
\partial_{\underline{x_2}}f\\
\ldots\\
\partial_{\underline{x_k}}f\\
\end{pmatrix}

is sometimes called Dirac operator in k Clifford variables. In the notation, S is the space of spinors, x_i=(x_{i1},x_{i2},\ldots,x_{in}) are n-dimensional variables and \partial_{\underline{x_i}}=\sum_j e_j\cdot \partial_{x_{ij}} is the Dirac operator in the i-th variable. This is a common generalization of the Dirac operator (k=1) and the Dolbeault operator (n=2, k arbitrary). It is an invariant differential operator, invariant to the action of the group SL(k)\times Spin(n). The resolution of D is known only in some special cases.

See also

References

  • Friedrich, Thomas (2000), Dirac Operators in Riemannian Geometry, American Mathematical Society, ISBN 978-0-8218-2055-1 
  • Colombo, F., I.; Sabadini, I. (2004), Analysis of Dirac Systems and Computational Algebra, Birkhauser Verlag AG, ISBN 978-3764342555 

Wikimedia Foundation. 2010.

Игры ⚽ Нужно сделать НИР?

Look at other dictionaries:

  • Dirac-Operator — Die Dirac Gleichung beschreibt in der Quantenmechanik die Eigenschaften und das Verhalten des Elektrons (und anderer Spin 1/2 Teilchen) und berücksichtigt dabei die spezielle Relativitätstheorie. Sie wurde 1928 von Paul Dirac entwickelt. Aus ihr… …   Deutsch Wikipedia

  • Dirac equation — Quantum field theory (Feynman diagram) …   Wikipedia

  • Dirac-Gleichung — Die Dirac Gleichung beschreibt in der Quantenmechanik die Eigenschaften und das Verhalten von Fermionen (Spin 1/2 Teilchen, zum Beispiel Elektronen) und berücksichtigt dabei die spezielle Relativitätstheorie. Sie wurde 1928 von Paul Dirac… …   Deutsch Wikipedia

  • Dirac spectrum — In mathematics, a Dirac spectrum, named after Paul Dirac, is the spectrum of eigenvalues of a Dirac operator on a Riemannian manifold with a spin structure. The isospectral problem for the Dirac spectrum asks whether two Riemannian spin manifolds …   Wikipedia

  • Dirac sea — for a massive particle.  •  particles,  •  antiparticles The Dirac sea is a theoretical model of the vacuum as an infinite sea of particles with negative energy. It was first postulated by the British physicist Paul …   Wikipedia

  • Dirac delta function — Schematic representation of the Dirac delta function by a line surmounted by an arrow. The height of the arrow is usually used to specify the value of any multiplicative constant, which will give the area under the function. The other convention… …   Wikipedia

  • Dirac spinor — In quantum field theory, the Dirac spinor is the bispinor in the plane wave solution of the free Dirac equation, where (in the units ) is a relativistic spin 1/2 field …   Wikipedia

  • Dirac-Bild — Das Wechselwirkungsbild (auch als Wechselwirkungsdarstellung, Dirac Bild oder Dirac Darstellung bezeichnet) der Quantenmechanik ist ein Modell für den Umgang mit zeitabhängigen Problemen unter Berücksichtigung von Wechselwirkungen. Im… …   Deutsch Wikipedia

  • Dirac-Darstellung — Das Wechselwirkungsbild (auch als Wechselwirkungsdarstellung, Dirac Bild oder Dirac Darstellung bezeichnet) der Quantenmechanik ist ein Modell für den Umgang mit zeitabhängigen Problemen unter Berücksichtigung von Wechselwirkungen. Im… …   Deutsch Wikipedia

  • Dirac-Theorie — Die Dirac Gleichung beschreibt in der Quantenmechanik die Eigenschaften und das Verhalten des Elektrons (und anderer Spin 1/2 Teilchen) und berücksichtigt dabei die spezielle Relativitätstheorie. Sie wurde 1928 von Paul Dirac entwickelt. Aus ihr… …   Deutsch Wikipedia

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”