# Ellipsoidal coordinates

Ellipsoidal coordinates

Ellipsoidal coordinates are a three-dimensional orthogonal coordinate system (λ,μ,ν) that generalizes the two-dimensional elliptic coordinate system. Unlike most three-dimensional orthogonal coordinate systems that feature quadratic coordinate surfaces, the ellipsoidal coordinate system is not produced by rotating or projecting any two-dimensional orthogonal coordinate system.

## Basic formulae

The Cartesian coordinates (x,y,z) can be produced from the ellipsoidal coordinates (λ,μ,ν) by the equations

$x^{2} = \frac{\left( a^{2} + \lambda \right) \left( a^{2} + \mu \right) \left( a^{2} + \nu \right)}{\left( a^{2} - b^{2} \right) \left( a^{2} - c^{2} \right)}$
$y^{2} = \frac{\left( b^{2} + \lambda \right) \left( b^{2} + \mu \right) \left( b^{2} + \nu \right)}{\left( b^{2} - a^{2} \right) \left( b^{2} - c^{2} \right)}$
$z^{2} = \frac{\left( c^{2} + \lambda \right) \left( c^{2} + \mu \right) \left( c^{2} + \nu \right)}{\left( c^{2} - b^{2} \right) \left( c^{2} - a^{2} \right)}$

where the following limits apply to the coordinates

− λ < c2 < − μ < b2 < − ν < a2.

Consequently, surfaces of constant λ are ellipsoids

$\frac{x^{2}}{a^{2} + \lambda} + \frac{y^{2}}{b^{2} + \lambda} + \frac{z^{2}}{c^{2} + \lambda} = 1,$

whereas surfaces of constant μ are hyperboloids of one sheet

$\frac{x^{2}}{a^{2} + \mu} + \frac{y^{2}}{b^{2} + \mu} + \frac{z^{2}}{c^{2} + \mu} = 1,$

because the last term in the lhs is negative, and surfaces of constant ν are hyperboloids of two sheets

$\frac{x^{2}}{a^{2} + \nu} + \frac{y^{2}}{b^{2} + \nu} + \frac{z^{2}}{c^{2} + \nu} = 1$

because the last two terms in the lhs are negative.

## Scale factors and differential operators

For brevity in the equations below, we introduce a function

$S(\sigma) \ \stackrel{\mathrm{def}}{=}\ \left( a^{2} + \sigma \right) \left( b^{2} + \sigma \right) \left( c^{2} + \sigma \right)$

where σ can represent any of the three variables (λ,μ,ν). Using this function, the scale factors can be written

$h_{\lambda} = \frac{1}{2} \sqrt{\frac{\left( \lambda - \mu \right) \left( \lambda - \nu\right)}{S(\lambda)}}$
$h_{\mu} = \frac{1}{2} \sqrt{\frac{\left( \mu - \lambda\right) \left( \mu - \nu\right)}{S(\mu)}}$
$h_{\nu} = \frac{1}{2} \sqrt{\frac{\left( \nu - \lambda\right) \left( \nu - \mu\right)}{S(\nu)}}$

Hence, the infinitesimal volume element equals

$dV = \frac{\left( \lambda - \mu \right) \left( \lambda - \nu \right) \left( \mu - \nu\right)}{8\sqrt{-S(\lambda) S(\mu) S(\nu)}} \ d\lambda d\mu d\nu$

and the Laplacian is defined by

$\nabla^{2} \Phi = \frac{4\sqrt{S(\lambda)}}{\left( \lambda - \mu \right) \left( \lambda - \nu\right)} \frac{\partial}{\partial \lambda} \left[ \sqrt{S(\lambda)} \frac{\partial \Phi}{\partial \lambda} \right] \ + \$
$\frac{4\sqrt{S(\mu)}}{\left( \mu - \lambda \right) \left( \mu - \nu\right)} \frac{\partial}{\partial \mu} \left[ \sqrt{S(\mu)} \frac{\partial \Phi}{\partial \mu} \right] \ + \ \frac{4\sqrt{S(\nu)}}{\left( \nu - \lambda \right) \left( \nu - \mu\right)} \frac{\partial}{\partial \nu} \left[ \sqrt{S(\nu)} \frac{\partial \Phi}{\partial \nu} \right]$

Other differential operators such as $\nabla \cdot \mathbf{F}$ and $\nabla \times \mathbf{F}$ can be expressed in the coordinates (λ,μ,ν) by substituting the scale factors into the general formulae found in orthogonal coordinates.

• Focaloid (shell given by two coordinate surfaces)

## Bibliography

• Morse PM, Feshbach H (1953). Methods of Theoretical Physics, Part I. New York: McGraw-Hill. p. 663.
• Zwillinger D (1992). Handbook of Integration. Boston, MA: Jones and Bartlett. p. 114. ISBN 0-86720-293-9.
• Sauer R, Szabó I (1967). Mathematische Hilfsmittel des Ingenieurs. New York: Springer Verlag. pp. 101–102. LCCN 67-25285.
• Korn GA, Korn TM (1961). Mathematical Handbook for Scientists and Engineers. New York: McGraw-Hill. p. 176. LCCN 59-14456.
• Margenau H, Murphy GM (1956). The Mathematics of Physics and Chemistry. New York: D. van Nostrand. pp. 178–180. LCCN 55-10911.
• Moon PH, Spencer DE (1988). "Ellipsoidal Coordinates (η, θ, λ)". Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions (corrected 2nd ed., 3rd print ed. ed.). New York: Springer Verlag. pp. 40–44 (Table 1.10). ISBN 0-387-02732-7.

### Unusual convention

• Landau LD, Lifshitz EM, Pitaevskii LP (1984). Electrodynamics of Continuous Media (Volume 8 of the Course of Theoretical Physics) (2nd edition ed.). New York: Pergamon Press. pp. 19–29. ISBN 978-0750626347.  Uses (ξ, η, ζ) coordinates that have the units of distance squared.

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• ellipsoidal coordinates — elipsoidinės koordinatės statusas T sritis fizika atitikmenys: angl. ellipsoidal coordinates vok. ellipsoidale Koordinaten, f; elliptische Raumkoordinaten, f rus. эллипсоидальные координаты, f pranc. coordonnées ellipsoïdales, f …   Fizikos terminų žodynas

• Oblate spheroidal coordinates — Figure 1: Coordinate isosurfaces for a point P (shown as a black sphere) in oblate spheroidal coordinates (μ, ν, φ). The z axis is vertical, and the foci are at ±2. The red oblate spheroid (flattened sphere) corresponds to μ=1, whereas the blue… …   Wikipedia

• Paraboloidal coordinates — are a three dimensional orthogonal coordinate system (λ,μ,ν) that generalizes the two dimensional parabolic coordinate system. Similar to the related ellipsoidal coordinates, the paraboloidal coordinate system has orthogonal quadratic coordinate… …   Wikipedia

• Orthogonal coordinates — In mathematics, orthogonal coordinates are defined as a set of d coordinates q = (q1, q2, ..., qd) in which the coordinate surfaces all meet at right angles (note: superscripts are indices, not exponents). A coordinate surface for a particular… …   Wikipedia

• Curvilinear coordinates — Curvilinear, affine, and Cartesian coordinates in two dimensional space Curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian… …   Wikipedia

• Conical coordinates — Coordinate surfaces of the conical coordinates. The constants b and c were chosen as 1 and 2, respectively. The red sphere represents r=2, the blue elliptic cone aligned with the vertical z axis represents μ=cosh(1) and the yellow elliptic cone… …   Wikipedia

• Prolate spheroidal coordinates — are a three dimensional orthogonal coordinate system that results from rotating the two dimensional elliptic coordinate system about the focal axis of the ellipse, i.e., the axis on which the foci are located. Rotation about the other axis… …   Wikipedia

• Toroidal coordinates — are a three dimensional orthogonal coordinate system that results from rotating the two dimensional bipolar coordinate system about the axis that separates its two foci. Thus, the two foci F {1} and F {2} in bipolar coordinates become a ring of… …   Wikipedia

• Geographic coordinate system — Map of Earth showing lines of latitude (horizontally) and longitude (vertically), Eckert VI projection; large version (pdf, 3.12MB) …   Wikipedia

• Gabriel Lamé — (July 22, 1795 May 1, 1870) was a French mathematician. BiographyLamé was born in Tours, in today s département of Indre et Loire.He became well known for his general theory of curvilinear coordinates and his notation and study of classes of… …   Wikipedia