# Paraboloidal coordinates

Paraboloidal coordinates

Paraboloidal coordinates are a three-dimensional orthogonal coordinate system (λ,μ,ν) that generalizes the two-dimensional parabolic coordinate system. Similar to the related ellipsoidal coordinates, the paraboloidal coordinate system has orthogonal quadratic coordinate surfaces that are not produced by rotating or projecting any two-dimensional orthogonal coordinate system.

Coordinate surfaces of the three-dimensional paraboloidal coordinates.

## Basic formulae

The Cartesian coordinates (x,y,z) can be produced from the ellipsoidal coordinates (λ,μ,ν) by the equations

$x^{2} = \frac{\left( A - \lambda \right) \left( A - \mu \right) \left( A - \nu \right)}{B - A}$
$y^{2} = \frac{\left( B - \lambda \right) \left( B - \mu \right) \left( B - \nu \right)}{A - B}$
$z = \frac{1}{2} \left( A + B - \lambda - \mu -\nu \right)$

where the following limits apply to the coordinates

λ < B < μ < A < ν

Consequently, surfaces of constant λ are elliptic paraboloids

$\frac{x^{2}}{\lambda - A} + \frac{y^{2}}{\lambda - B} = 2z + \lambda$

and surfaces of constant ν are likewise

$\frac{x^{2}}{\nu - A} + \frac{y^{2}}{\nu - B} = 2z + \nu$

whereas surfaces of constant μ are hyperbolic paraboloids

$\frac{x^{2}}{\mu - A} + \frac{y^{2}}{\mu - B} = 2z + \mu$

## Scale factors

The scale factors for the paraboloidal coordinates (λ,μ,ν) are

$h_{\lambda} = \frac{1}{2} \sqrt{\frac{\left( \mu - \lambda \right) \left( \nu - \lambda \right)}{ \left( A - \lambda \right) \left( B - \lambda \right)}}$
$h_{\mu} = \frac{1}{2} \sqrt{\frac{\left( \nu - \mu \right) \left( \lambda - \mu \right)}{ \left( A - \mu \right) \left( B - \mu \right)}}$
$h_{\nu} = \frac{1}{2} \sqrt{\frac{\left( \lambda - \nu \right) \left( \mu - \nu \right)}{ \left( A - \nu \right) \left( B - \nu \right)}}$

Hence, the infinitesimal volume element equals

$dV = \frac{\left( \mu - \lambda \right) \left( \nu - \lambda \right) \left( \nu - \mu\right)}{8\sqrt{\left( A - \lambda \right) \left( B - \lambda \right) \left( A - \mu \right) \left( \mu - B \right) \left( \nu - A \right) \left( \nu - B \right) }} \ d\lambda d\mu d\nu$

Differential operators such as $\nabla \cdot \mathbf{F}$ and $\nabla \times \mathbf{F}$ can be expressed in the coordinates (λ,μ,ν) by substituting the scale factors into the general formulae found in orthogonal coordinates.

## Bibliography

• Morse PM, Feshbach H (1953). Methods of Theoretical Physics, Part I. New York: McGraw-Hill. p. 664. ISBN [[Special:BookSources/0-07-043316-X, LCCN 52-11515|0-07-043316-X, LCCN 52-11515]].
• Margenau H, Murphy GM (1956). The Mathematics of Physics and Chemistry. New York: D. van Nostrand. pp. 184–185. LCCN 55-10911.
• Korn GA, Korn TM (1961). Mathematical Handbook for Scientists and Engineers. New York: McGraw-Hill. p. 180. LCCN 59-14456, ASIN B0000CKZX7.
• Arfken G (1970). Mathematical Methods for Physicists (2nd ed. ed.). Orlando, FL: Academic Press. pp. 119–120.
• Sauer R, Szabó I (1967). Mathematische Hilfsmittel des Ingenieurs. New York: Springer Verlag. p. 98. LCCN 67-25285.
• Zwillinger D (1992). Handbook of Integration. Boston, MA: Jones and Bartlett. p. 114. ISBN 0-86720-293-9.  Same as Morse & Feshbach (1953), substituting uk for ξk.
• Moon P, Spencer DE (1988). "Paraboloidal Coordinates (μ, ν, λ)". Field Theory Handbook, Including Coordinate Systems, Differential Equations, and Their Solutions (corrected 2nd ed., 3rd print ed. ed.). New York: Springer-Verlag. pp. 44–48 (Table 1.11). ISBN 978-0387184302.

Wikimedia Foundation. 2010.

### Look at other dictionaries:

• Curvilinear coordinates — Curvilinear, affine, and Cartesian coordinates in two dimensional space Curvilinear coordinates are a coordinate system for Euclidean space in which the coordinate lines may be curved. These coordinates may be derived from a set of Cartesian… …   Wikipedia

• Orthogonal coordinates — In mathematics, orthogonal coordinates are defined as a set of d coordinates q = (q1, q2, ..., qd) in which the coordinate surfaces all meet at right angles (note: superscripts are indices, not exponents). A coordinate surface for a particular… …   Wikipedia

• Oblate spheroidal coordinates — Figure 1: Coordinate isosurfaces for a point P (shown as a black sphere) in oblate spheroidal coordinates (μ, ν, φ). The z axis is vertical, and the foci are at ±2. The red oblate spheroid (flattened sphere) corresponds to μ=1, whereas the blue… …   Wikipedia

• Ellipsoidal coordinates — are a three dimensional orthogonal coordinate system (λ,μ,ν) that generalizes the two dimensional elliptic coordinate system. Unlike most three dimensional orthogonal coordinate systems that feature quadratic coordinate surfaces, the ellipsoidal… …   Wikipedia

• Conical coordinates — Coordinate surfaces of the conical coordinates. The constants b and c were chosen as 1 and 2, respectively. The red sphere represents r=2, the blue elliptic cone aligned with the vertical z axis represents μ=cosh(1) and the yellow elliptic cone… …   Wikipedia

• Cartesian coordinate system — Illustration of a Cartesian coordinate plane. Four points are marked and labeled with their coordinates: (2, 3) in green, (−3, 1) in red, (−1.5, −2.5) in blue, and the origin (0, 0) in purple. A Cartesian coordinate system specifies each point… …   Wikipedia

• Polar coordinate system — Points in the polar coordinate system with pole O and polar axis L. In green, the point with radial coordinate 3 and angular coordinate 60 …   Wikipedia

• Coordinate system — For geographical coordinates on Wikipedia, see Wikipedia:WikiProject Geographical coordinates. In geometry, a coordinate system is a system which uses one or more numbers, or coordinates, to uniquely determine the position of a point or other… …   Wikipedia

• Cylindrical coordinate system — A cylindrical coordinate system with origin O, polar axis A, and longitudinal axis L. The dot is the point with radial distance ρ = 4, angular coordinate φ = 130°, and height z = 4. A cylindrical coordinate system is …   Wikipedia

• List of mathematics articles (P) — NOTOC P P = NP problem P adic analysis P adic number P adic order P compact group P group P² irreducible P Laplacian P matrix P rep P value P vector P y method Pacific Journal of Mathematics Package merge algorithm Packed storage matrix Packing… …   Wikipedia