- Covalent radius
-
The covalent radius, rcov, is a measure of the size of an atom that forms part of one covalent bond. It is usually measured either in picometres (pm) or angstroms (Å), with 1 Å = 100 pm.
In principle, the sum of the two covalent radii should equal the covalent bond length between two atoms, R(AB) = r(A) + r(B). Moreover, different radii can be introduced for single, double and triple bonds (r1, r2 and r3 below), in a purely operational sense. These relationships are certainly not exact because the size of an atom is not constant but depends on its chemical environment. For heteroatomic A–B bonds, ionic terms may enter. Often the polar covalent bonds are shorter than would be expected on the basis of the sum of covalent radii. Tabulated values of covalent radii are either average or idealized values, which nevertheless show a certain transferability between different situations, that makes them useful.
The bond lengths R(AB) are measured by X-ray diffraction (more rarely, neutron diffraction on molecular crystals). Rotational spectroscopy can also give extremely accurate values of bond lengths. For homonuclear A–A bonds, Linus Pauling took the covalent radius to be half the single-bond length in the element, e.g. R(H–H, in H2) = 74.14 pm so rcov(H) = 37.07 pm: in practice, it is usual to obtain an average value from a variety of covalent compounds, although the difference is usually small. Sanderson has published a recent set of non-polar covalent radii for the main-group elements,[1] but the availability of large collections of bond lengths, which are more transferable, from the Cambridge Crystallographic Database[2][3] has rendered covalent radii obsolete in many situations.
Table of covalent radii
The values in the table below are based on a statistical analysis of more than 228,000 experimental bond lengths from the Cambridge Structural Database.[4] The numbers in parentheses are the estimated standard deviations for the last digit. This fit pre-fixes the radii for C, N and O.
A different approach is to make a self-consistent fit for all elements in a smaller set of molecules. This was done separately for single,[5] double,[6] and triple bonds[7] up to superheavy elements. Both experimental and computational data were used. The single-bond results are often similar to those of Cordero et al.[4] When they are different, the coordination numbers used can be different. This is notably the case for most (d and f) transition metals. Normally one expects that r1 > r2 > r3. Deviations may occur for weak multiple bonds, if the differences of the ligand are larger than the differences of R in the data used.
Note that elements up to E118 have now been experimentally produced and that there are chemical studies on an increasing number of them.
Covalent radii in pm from analysis of the Cambridge Structural Database,
which contains about 426,000 crystal structures[4]H He 1 2 31(5) 28 Li Be B C N O F Ne 3 4 5 6 7 8 9 10 128(7) 96(3) 84(3) sp3 76(1) sp2 73(2)
sp 69(1)
71(1) 66(2) 57(3) 58 Na Mg Al Si P S Cl Ar 11 12 13 14 15 16 17 18 166(9) 141(7) 121(4) 111(2) 107(3) 105(3) 102(4) 106(10) K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 203(12) 176(10) 170(7) 160(8) 153(8) 139(5) l.s. 139(5) h.s. 161(8)
l.s. 132(3) h.s. 152(6)
l.s. 126(3) h.s. 150(7)
124(4) 132(4) 122(4) 122(3) 120(4) 119(4) 120(4) 120(3) 116(4) Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 220(9) 195(10) 190(7) 175(7) 164(6) 154(5) 147(7) 146(7) 142(7) 139(6) 145(5) 144(9) 142(5) 139(4) 139(5) 138(4) 139(3) 140(9) Cs Ba La Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 55 56 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 244(11) 215(11) 187(8) 175(10) 170(8) 162(7) 151(7) 144(4) 141(6) 136(5) 136(6) 132(5) 145(7) 146(5) 148(4) 140(4) 150 150 Fr Ra Ac 87 88 260 221(2) La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb 57 58 59 60 61 62 63 64 65 66 67 68 69 70 207(8) 204(9) 203(7) 201(6) 199 198(8) 198(6) 196(6) 194(5) 192(7) 192(7) 189(6) 190(10) 187(8) Ac Th Pa U Np Pu Am Cm 89 90 91 92 93 94 95 96 215 206(6) 200 196(7) 190(1) 187(1) 180(6) 169(3)
Single,[5] double,[6] and triple bond[7] covalent radii in pm determined using
400 experimental radii, and calculated radiiH He 1 2 32
-
-46
-
-Li Be B C N O F Ne 3 4 Radius / pm: 5 6 7 8 9 10 133
124
-102
90
85single
double
triple85
78
7375
67
6071
60
5463
57
5364
59
5367
96
-Na Mg Al Si P S Cl Ar 11 12 13 14 15 16 17 18 155
160
-139
132
127126
113
111116
107
102111
102
94103
94
9599
95
9396
107
96K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Kr 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 196
193
-171
147
133148
116
114136
117
108134
112
106122
111
103119
105
103116
109
102111
103
96110
101
101112
115
120118
120
-124
117
121121
111
114121
114
106116
107
107114
109
110117
121
108Rb Sr Y Zr Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sb Te I Xe 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 210
202
-185
157
139163
130
124154
127
121147
125
116138
121
113128
120
110125
114
103125
110
106120
117
112128
139
137136
144
-142
136
146140
130
132140
133
127136
128
121133
129
125131
135
122Cs Ba La-Yb Lu Hf Ta W Re Os Ir Pt Au Hg Tl Pb Bi Po At Rn 55 56 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 232
209
-196
161
149162
131
131152
128
122146
126
119137
120
115131
119
110129
116
109122
115
107123
112
110124
121
123133
142
-144
142
150144
135
137151
141
135145
135
129147
138
138142
145
133Fr Ra Ac-No Lr Rf Db Sg Bh Hs Mt Ds Rg Cn Uut Uuq Uup Uuh Uus Uuo 87 88 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 223
218
-201
173
159161
141
-157
140
131149
136
126143
128
121141
128
119134
125
118129
125
113128
116
112121
116
118122
137
130136
-
-143
-
-162
-
-175
-
-165
-
-157
-
-La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb 57 58 59 60 61 62 63 64 65 66 67 68 69 70 180
139
139163
137
131176
138
128174
137173
135172
134168
134169
135
132168
135167
133166
133165
133164
131170
129Ac Th Pa U Np Pu Am Cm Bk Cf Es Fm Md No 89 90 91 92 93 94 95 96 97 98 99 100 101 102 186
153
140175
143
136169
138
129170
134
118171
136
116172
135166
135166
136168
139168
140165
140167 173
139176 References
- ^ Sanderson, R. T. (1983). "Electronegativity and Bond Energy". Journal of the American Chemical Society 105 (8): 2259–2261. doi:10.1021/ja00346a026.
- ^ Allen, F. H.; Kennard, O.; Watson, D. G.; Brammer, L.; Orpen, A. G.; Taylor, R. (1987). "Table of Bond Lengths Determined by X-Ray and Neutron Diffraction". J. Chem. Soc., Perkin Trans. 2 (12): S1–S19. doi:10.1039/P298700000S1.
- ^ Orpen, A. Guy; Brammer, Lee; Allen, Frank H.; Kennard, Olga; Watson, David G.; Taylor, Robin (1989). "Supplement. Tables of bond lengths determined by X-ray and neutron diffraction. Part 2. Organometallic compounds and co-ordination complexes of the d- and f-block metals". Journal of the Chemical Society, Dalton Transactions (12): S1. doi:10.1039/DT98900000S1.
- ^ a b c Beatriz Cordero, Verónica Gómez, Ana E. Platero-Prats, Marc Revés, Jorge Echeverría, Eduard Cremades, Flavia Barragán and Santiago Alvarez (2008). "Covalent radii revisited". Dalton Trans. (21): 2832–2838. doi:10.1039/b801115j.
- ^ a b P. Pyykkö, M. Atsumi (2009). "Molecular Single-Bond Covalent Radii for Elements 1-118". Chemistry: A European Journal 15: 186–197. doi:10.1002/chem.200800987.
- ^ a b P. Pyykkö, M. Atsumi (2009). "Molecular Double-Bond Covalent Radii for Elements Li–E112". Chemistry: A European Journal 15 (46): 12770–12779. doi:10.1002/chem.200901472.. Figure 3 of this paper contains all radii of refs. [5-7]. The mean-square deviation of each set is 3 pm.
- ^ a b P. Pyykkö, S. Riedel, M. Patzschke (2005). "Triple-Bond Covalent Radii". Chemistry: A European Journal 11 (12): 3511–3520. doi:10.1002/chem.200401299. PMID 15832398.
Categories:- Chemical properties
- Chemical bonding
Wikimedia Foundation. 2010.