- Neuroergonomics
-
Neuroergonomics is the application of neuroscience to ergonomics. Traditional ergonomic studies have relied largely on psychological explanations of issues of human factors, such as safety, response time, and repetitive stress injuries. Neuroergonomics, by contrast, relies on biological explanations.
Neuroergonomics has two major aims: to use existing and emerging knowledge of human performance and brain function to design such systems for safer and more efficient operation, and to advance understanding of human brain function in relation to cognitive processes and performance in real-world tasks.
To meet these goals, neuroergonomics combines two disciplines--neuroscience, the study of brain function, and human factors, the study of how to match technology with the capabilities and limitations of people so they can work effectively and safely. The goal of merging these two fields is to use the startling discoveries of human brain and physiological functioning both to inform the design of technologies in the workplace and home, and to provide new training methods that enhance performance, expand capabilities, and optimize the fit between people and technology.
Research in the area of neuroergonomics has blossomed in recent years with the emergence of noninvasive techniques for monitoring human brain function that can be used to study various aspects of human behavior in relation to technology and work, including mental workload, visual attention, working memory, motor control, human-automation interaction, and adaptive automation. Consequently, this interdisciplinary field is concerned with investigations of the neural bases of human perception, cognition, and performance in relation to systems and technologies in the real world -- for example, in the use of computers and various other machines at home or in the workplace, and in operating vehicles such as aircraft, cars, trains, and ships.
Academic conferences
- International Conference on Human-Computer Interaction (HCII) holds a special track on augmented cognition and neuroergonomics.
Further reading
- Parasuraman, R. (2003). "Neuroergonomics: Research and practice." Theoretical Issues in Ergonomics Science, 4, 5-20.
External links
Categories:- Neuroscience
- Ergonomics
- Neologisms
- Neuroscience stubs
Wikimedia Foundation. 2010.