- Acid–base reaction
An acid-base reaction is a
chemical reaction that occurs between anacid and a base. Several concepts exist which provide alternative definitions for the reaction mechanisms involved and their application in solving related problems. Despite several similarities in definitions, their importance becomes apparent as different methods of analysis when applied to acid-base reactions for gaseous or liquid species, or when acid or base character may be somewhat less apparent. Historically, the first of these scientific concepts of acids and bases was provided by the Frenchchemist Antoine Lavoisier , circa 1776.Miessler, L. M., Tar, D. A., (1991) p166 - Table of discoveries attributes Antoine Lavoisier as the first to posit a scientific theory in relation tooxyacid s.]Common acid-base theories
Lavoisier definition
Since Lavoisier's knowledge of
strong acids was mainly restricted tooxoacid s, which tend to contain central atoms in high oxidation states surrounded by oxygen, such as HNO3 and H2SO4, and since he was not aware of the true composition of the hydrohalic acids, HCl, HBr, and HI, he defined acids in terms of their containing "oxygen ", which in fact he named from Greek words meaning "acid-former" (from the Greek οξυς ("oxys") meaning "acid" or "sharp" and γεινομαι ("geinomai") or "engender"). The Lavoisier definition was held as absolute truth for over 30 years, until the 1810 article and subsequent lectures by Sir Humphry Davy in which he proved the lack of oxygen in H2S, H2Te, and the hydrohalic acids.Liebig definition
This definition is proposed by
Justus von Liebig circa 1838,Miessler, L. M., Tar, D. A., (1991) p166 - table of discoveries attributes Justus von Liebig's publication as 1838] based on his extensive works on the chemical composition oforganic acid s. This finished the doctrinal shift from oxygen-based acids to hydrogen-based acids, started by Davy. According to Liebig, an acid is a hydrogen-containing substance in which the hydrogen could be replaced by a metal.Meyers, R. (2003) p156] Liebig's definition, while completely empirical, remained in use for almost 50 years until the adoption of the Arrhenius definition.H. L. Finston and A. C. Rychtman, A New View of Current Acid-Base Theories, John Wiley & Sons, New York, 1982, pp. 140-146.]Arrhenius definition
The Arrhenius definition of acid-base reactions is a more simplified acid-base concept devised by
Svante Arrhenius , which was used to provide a modern definition of bases that followed from his work withFriedrich Wilhelm Ostwald in establishing the presence of ions in aqueous solution in 1884, and led to Arrhenius receiving theNobel Prize in Chemistry in 1903 for "recognition of the extraordinary services . . . rendered to the advancement of chemistry by his electrolytic theory of dissociation".As defined at the time of discovery, acid-base reactions are characterized by Arrhenius acids, which dissociate in aqueous solution form hydrogen or the later-termed
hydronium (H3O+) ions, and Arrhenius bases which form hydroxide (OH-) ions. More recentIUPAC recommendations now suggest the newer term "hydronium" [Murray, K. K., Boyd, R. K., et al. (2006) -- Please note that in this document, there is no reference to deprecation of "oxonium", which is also still accepted as it remains in the IUPAC Gold book, but rather reveals preference for the term "Hydronium".] be used in favor of the older accepted term "oxonium"International Union of Pure and Applied Chemistry, et al. (2006), "Oxonium Ions"] to illustrate reaction mechanisms such as those defined in the Brønsted-Lowry and solvent system definitions more clearly, with the Arrhenius definition serving as a simple general outline of acid-base character More succinctly, the Arrhenius definition can be surmised as, "Arrhenius acids form hydrogen ions in aqueous solution with Arrhenius bases forming hydroxide ions."The "universal aqueous acid-base definition" of the Arrhenius concept is described as the formation of water from hydrogen and hydroxide ions, or hydronium ions and hydroxide ions produced from the dissociation of an acid and base in aqueous solution (2 H2O → OH- + H3O+ ) [The use of H+ is as shorthand for H3O; 2 H2O → H3O+ + OH- = H2O → H+ + OH- ] , which leads to the definition that in Arrhenius acid-base reactions, a salt and water is formed from the reaction between an acid and a base -- in more simple scientific definitions, this form of reaction is called a Neutralization reaction.
:acid+ + base- → salt + water
The positive ion from a base can form a salt with the negative ion from an acid. For example, two moles of the base
sodium hydroxide (NaOH) can combine with one mole of sulfuric acid (H2SO4) to form two moles ofwater and one mole ofsodium sulfate .:2NaOH + H2SO4 → 2 H2O + Na2SO4
Brønsted-Lowry definition
The Brønsted-Lowry definition, formulated independently by its two proponents
Johannes Nicolaus Brønsted andMartin Lowry in 1923 is based upon the idea ofprotonation of bases through the de-protonation of acids -- more commonly referred to as the ability of acids to "donate" hydrogen ions (H+) or protons to bases, which "accept" them.Miessler, L. M., Tar, D. A., (1991), p167-169 -- According to this page, the original definition was that "acids have a tendency to lose a proton"] In contrast to the Arrhenius definition, the Brønsted-Lowry definition refers to the products of an acid-base reaction as conjugate acids and bases to refer to the relation of one proton, and to indicate that there has been a reaction between the two quantities, rather than a "formation" of salt and water, as explained in the Arrhenius definition.It defines that in reactions, there is the donation and reception of a proton, which essentially refers to the removal of a hydrogen ion bonded within a compound and its reaction with another compound,Clayden, J., Warren, S., et al. (2000), p182-184] and not the removal of a proton from the nucleus of an atom, which would require inordinate amounts of energy not attainable through the simple dissociation of acids. In differentiation from the
Arrhenius definition, the Brønsted-Lowry definition postulates that for each acid, there is a conjugate acid and base or "conjugate acid-base pair" that is formed through a complete reaction, which also includes water, which isamphoteric :Lewis definition
The Lewis definition of acid-base reactions, devised by
Gilbert N. Lewis in 1923Miessler, L. M., Tar, D. A., (1991) p166 - Table of discoveries attributes the date of publication/release for the Lewis theory as 1923.] is an encompassing theory to the Brønsted-Lowry and solvent-system definitions with regards to the premise of a donation mechanism, which conversely attributes the donation of electron pairs from bases and the acceptance by acids, rather than protons or other bonded substancesMiessler, L. M., Tar, D. A., (1991) p170-172] and spans both aqueous and non-aqueous reactions.: Ag+ + 2 :NH3 → [H3N:Ag:NH3] +:"A silver cation reacts as an acid with
ammonia which acts as an electron-pair donor, forming an ammonia-silver adduct"In reactions between
Lewis acid s and bases, there is the formation of an adduct when the highest occupied molecular orbital (HOMO ) of a molecule, such as NH3 with available lone electron pair(s) donates lone pairs of electrons to the electron-deficient molecule's lowest unoccupied molecular orbital (LUMO ) through aco-ordinate covalent bond ; in such a reaction, the HOMO-interacting molecule acts as a base, and the LUMO-interacting molecule acts as an acid. In highly-polar molecules, such asboron trifluoride (BF3), the most electronegative element pulls electrons towards its own orbitals, providing a more positive charge on the less-electronegative element and a difference in its electronic structure due to the axial or equatorial orbiting positions of its electrons, causing repulsive effects from "lone pair-bonding pair" (Lp-Bp) interactions between bonded atoms in excess of those already provided by "bonding pair-bonding pair" (Bp-Bp) interactions. Adducts involving metal ions are referred to as co-ordination compounds.Solvent-system definition
This definition is based on a generalization of the earlier Arrhenius definition to all autodissociating solvents.In all such solvents there is a certain concentration of a positive species, solvonium cations and negative species, solvate anions, in equilibrium with the neutral solvent molecules. For example:
: 2H2O unicode| H3O+ (
hydronium ) + OH- (hydroxide ): 2NH3 unicode| NH4+ (ammonium ) + NH2− (amide )or even some aprotic systems: N2O4 unicode| NO+ (nitrosonium ) + NO3− (nitrate ): 2SbCl3 unicode| SbCl2+ (dichloroantimonium) + SbCl4- (tetrachloroantimonate)A solute causing an increase in the concentration of the solvonium ions and a decrease in the solvate ions is an acid and one causing the reverse is a base. Thus, in liquid
ammonia , KNH2 (supplying NH2-) is a strong base, and NH4NO3 (supplying NH4+) is a strong acid. In liquidsulfur dioxide (SO2),thionyl compounds (supplying SO2+) behave as acids, andsulfites (supplying SO32−) behave as bases.Here are some nonaqueous acid-base reactions in liquid ammonia: 2NaNH2 (base) + Zn(NH2)2 (
amphiphilic amide) → Na2 [Zn(NH2)4] : 2NH4I (acid) + Zn(NH2)2 (amphiphilic amide) → [Zn(NH3)4)] I2Nitric acid can be a base in liquid sulfuric acid:: HNO3 (base) + 2H2SO4 → NO2+ + H3O+ + 2HSO4-And things become even stranger in the aprotic world, for example in liquid N2O4:: AgNO3 (base) + NOCl (acid) → N2O4 + AgClSince solvent-system definition depends on the solvent as well as on the compound itself, the same compound can change its role depending on the choice of the solvent. Thus, HClO4 is a strong acid in water, a weak acid in acetic acid, and a weak base in fluorosulfonic acid.
Other acid-base theories
Usanovich definition
The most general definition is that of the Russian chemist "Mikhail Usanovich", and can basically be summarized as defining an acid as anything that accepts negative species or donates positive ones, and a base as the reverse. This tends to overlap the concept of
redox (oxidation-reduction), and so is not highly favored by chemists. This is because redox reactions focus more on physical electron transfer processes, rather than bond making/bond breaking processes, although the distinction between these two processes is somewhat ambiguous.Lux-Flood definition
This definition, proposed by German chemist
Hermann Lux [Franz, H. (1966), p4] cite journal|title="Säuren" und "Basen" im Schmelzfluss: die Bestimmung. der Sauerstoffionen-Konzentration|first=Hermann|last=Lux|authorlink=Hermann Lux|journal=Ztschr. Elektrochem|date=1939|volume=45|issue=4|pages=303–309] in 1939, further improved byHåkon Flood circa 1947cite journal|title=The Acidic and Basic Properties of Oxides|last=Flood|first=H.|authorlink=Håkon Flood|coauthors=Forland, T.|journal=Acta Chem. Scand.|date=1947|volume=1|pages=592|doi=10.3891/acta.chem.scand.01-0592] and now commonly used in moderngeochemistry andelectrochemistry of molten salts, describes an acid as an oxide ion acceptor and a base as an oxide ion donor. For example:: MgO (base) + CO2 (acid) → MgCO3: CaO (base) + SiO2 (acid) → CaSiO3: NO3- (base) + S2O72- (acid) → NO2+ + 2SO42-cite journal|title=The Synthesis of Oxyhalides Utilizing Fused-Salt Media|first=Russel S.|last=Drago|coauthors=Whitten, Kenneth W.|journal=Inorg. Chem. |date=1966|volume=5|issue=4|pages=677–682|doi=10.1021/ic50038a038]Pearson definition
Wikimedia Foundation. 2010.